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ABSTRACT

The subset selection algorithm is extended to

search for a best subset from a large set of complex-valued

basis functions, This algorithm is used to design digital

finite-duration impulse response (FIR) filters having fever

coefficients than conventional FIR filters. An optimum

conventional FIR filter is derived which has best uniform

spacing of the fixed number of samples which are to be

used, and examples are presented which show that, for the

same number of coefficients, the complex-subsc-t-selection

filter can give better results than the optimum

conventional filter.

The complex subset selpctioii method is also applied

to estimation of the frequencies of sinusoids in the

presence of noise. A windowing technique is introduced to

increase the efficiency and accuracy of the algorithm for

frequency estimates. The results are courpared withs

Cramer-Rao bounds.
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CHAPTER 1

INTRODUCTION

This is a report of work done on digital

filter design and sinusoidal-tone estimation by the complex

subset selection metbod. In the complex subset selection

method, a set of complex basis functions are chosen and a

best subset is selected to represent a desired function.

The desired functions investigated are an ideal transfer

tunction of a low-pass digital filter, and the sum of two

sinusoidal tones. The summed squared-magnitude error is

used as the criterion for subset selection.

One can design a digital lowpass FIR filter by use

of the window method (1), frequency sampling (2),and other

techniques (3),(4). In all of these methods, the input data

elements are uniformly spaced in time with respect to one

another. Instead, we search for the best M data elements,

which may or may not be uniformly located, to minimize the

least squares error in approximating the desired transfer

function. Wc compare the result with a filter having the

same number of coefficients, but uniformly spaced b

locations.

We will also investiqate sinusoidal-tone parameter

estimation, which is a very important sul bject in '

communication systems. Linear prediction (5) and spectral

estimation (6) are two well known methods for estimating
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parameters of tones, such as frequencies. Both c-f these

methods can produce biased estimates of the the signal

parameters when more than one signal is present (7). We use

complex subset selection to estimate frequencies of tones

without such bias. The effect of additive noise is

discussed, and the results are compared with Cramer-Rao

bounds computed by Rife (8). A windowing technique is

applied to increase the accuracy and the efficiency of the

algorithm. By "windowing technique", we mean that a small

set of basis fuctions is always chosen over potentially

productive intervals, which will be searched for a best

subset, and other intervals are ignored. That is,

potentially productive intervals are first located, and

only these intervals are searched for the desired

frequencies.

The basis for complex subset selection is reviewed

in the following paragraphs:

Regression analysis may be broadly defined as the

analysis of relationships a!,jong variables. It is one of the

most widely used statistical tools because it provides a

simple method for establishing a linear functional

relationship among variables. The relationship is expressed

in the form of an equation connecting the response or

dependent variable 9, and one or more independent

variables, x ,x ,.....,x * The regression equation takes

the form
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y= b x +b x .,o.+b x (1.1)
11 22 NN

where bAIb es0bN are called the regression coefficients

and are determined from the data, However, in some

applications, one needs to select H out of the N (M < N)

(independent variables to best approximate y by

y= a u +a u *.....,a u (1.2)
11 22

where U - u ,.....,u M is a subset selected from X =

{x1 .. 0*641,xj. Examining all ( N =N!/(N-M) !M! different
N MM

subsets to select the best subset involves a lot of

computation, especially when N is large.

Hocking and Leslie (H-L) (10) have developed an

algorithm for finding the best subset. In their algorithm,

they first test the variables which are superior. That is,

the ones which, when omitted from the linear regression

equation, result in a large residual error. If a best

subset is obtained, they stop. Otherwise, the variables

with smaller residual error are tested until a best subset |I
is obtained. They have developed a criterion for examining

only a fraction of all possible subsets and stopping after

the best subset is selected. The squared error criterion

was suggested by Mellow (11) to be usc-d ini ]incar

regression models.

The H-L algorithm was further investigated by

1111 Pill~a m

*2. ~*-..
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Lebotte and Hocking (12) for estimation cf the linear

regression coefficients to fit a surface of the form in

(1.1). They have also introduced some other improvements to

reduce the amount of computation. Later, Levasseur and

Lewis (13) considered antenna design as a partial basis

problem. They, too, applied a generalization of the H-L

algorithm. The value of extending the work of Levasseur and

Lewis to complex-valued functions was pointed out by D. W.

Sufts. He also suggested applying the method to the

synthesis of digital filters and to estimation of signal

parameters in the presence of noise.

In the following chapter, we restate the methods of

H-L and Levasseur and Lewis for complex subset selection to

make it useful for the problems considered in this thesis.

Digital filter synthesis will be discussed in chapter 3.

And chapter 4 is devoted to estimation of the frequencies

of sinusoidal signals by the method of ccmplex subset

selection.

•IJ
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CHAPTER 2

COMPLEX SUBSET SELECTION

2. 1- Introduction

Our objective is to extend an algorithm for partial

basis selection to complex-valued basis functions. In this

case, we have a large set of exponertials with imaginary

arguments as basis functions, the desire is to approximate

a given function by choosing a best subset of the basis set

with minimum approximation error. The least squares error

i;s used as the criterion for subset selection. The

algorithm is desiqned such that usually only a fraction of

all possible subsets is examined, and it comes to a halt as

soon as a best subset is selected. Hence, considerable

amounts of time and computation can usually be saved by not

examining all possible subsets.

This algorithm is suitable for such problems as

digital filter design and sinusiodal-tone estimation. This

is due to the representation of the transfer function of a

nonrecursive digital filter and the waveform of multiple

sinusoidal signals by linear combination of exponential

functions with imaginary argumenTs.

Some work has been done on parti4l basis selection

of real-valued functions by Levasseur and Lewis (13). Their

.1' - .
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derivation is restated in the next section for complex

partial basis selection.

2.2- The Algorithm

It is desired to approximate a given function D(x)

by a best subset of M elements chosen from N linearly

independent complex basis functions relative to some error

noim. The least squares norm is discussed because of its

later use, but other norms can be applied, as well.

Let us define a set of N complex basis functions as

a vector H, and a subset with M ( M < N) elements selected

from H as a vector U.

T
H [h ,h , . ...... ,h (2.2.1)

1 2 NI

T = u,, 2 .. . . uM (2.2.2)

1 2 M

U C- H

h (t) = EXP(Jw t) i=1,2, ..... ,N (2.2.3a)i i

Or

h (w) EXP(Jwt ) i=1,2,.....,N (2.2.3b)
i i

The subset parameter vector is defincd as

..........................



G = r,....g (2.2.4)
L91  2 f-

in which the compcnents of G are distinct and for some

value of i

w for some value of i when h
± i

is defined by (2.2.3a)

g =(2.2.5)

n
t for some value of i when h

is define by (2.2.3b)

for n=1,2,*.,*,m and i,,.,

'IT" mear~s transpose, and = ,

ThE ba~,is functions can have two versions in (2.2.3) so

that the approximaticn can be done either in the time

domain or the frequency domain. one can replace time with

position, and have basis functions related to location in

space. The approximating function A(x) is of the form

T
A (X) Lfc u C U (2.2.6)

in which the coefficient vector C is defined by

T
C PC Lcuc 0..0. CJ (2.2o7)

The error of approximation is defined to be
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E(CG) -- D(x) - M(x) x D(x) - ix) dx

(2.2.8)

and N (x) is a weight function which can be 1 or any

suitable function. The error E(C,G) is to be minimized by

choice of the subset parameter vector G and the coefficient

vector C. Choosing G is equivalent to choosing a subset of

M basis functions.

It is impractical to search over all (N) subsets
M

to find the best one, esecially when N is large which is

the case in most situations. Hence, the following method

is adopted which is based on the Hocking and Leslie (10)

algorithm, as extended by Levasseur end Lewis (13) to a

partial basis problem.

In the adopted method one searches for the

potential basis functions which contribute the iost to the

error function by their deletion. That is, a set of error

functions, E is is obtained where EL corresponds to the

error due to a best appioximation by using all basis

functions excluding the ith one.

E Msin. n(x) h Jw(2. 2. 91

Then, the basis functions are re-ordered in a way that
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their corresponding E.errors are in ascending order.

E < E 4 ...... < (2.2.10)
1 2 N

The basis functions coresponding to the large E. i s are

usually the potential basis functions which are good

candidates to be kept at the begining of the search. Let r

be a set of r= N - M basis functions to be deleted and let

ER be the corresponding approximation error. Also, define p

to be initially equal to r. Now, the search can be

implemented in the following three steps.

STEP-i. Delete the r basis functions corresponding

to B.L Is with subscripts less than, or equal to r (i K,

and compute the vinimum error ER If ER E, go to

step-3. If 1., > E follow step-2.

P+1

STEP-2. increment p by 1, and compute the error for

all FI) combinations of deleting r out of p basis

functions where deleted basis functions correspond to E. 's

with i < p. Let ER be the minimum error obtained from all

possible (P) combinations, If ER ( E go to step-3;

othermise(ER > E )re-execute step-2.

STEP-3. If E R <$ E~ a best subset has been
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achieved, and no further search is necessary. Hence the

selected basis functions are those which have been kept for

best approximation with minimum error either in step-1 or

step- 2,

NOTE: Step-I is to start the search while step-2 is

executed over and over until a best subset is obtained.

The search algorithm was outlined in the above

three steps, but it was not explaired why one stops

whenever ER ,< E.+ Now, this will be discussed.

Assume P=r + q with 1 < q < M to be a general ,case.

Let I= 1,2,... p) be a set of p indices taken from the set

ki,2,.o...., N} with largest element p. Let Iq be a set of r

indices selected from I which -result in minimum crror by

their deletion, and let I'CII,2,...o., N}be any set of i

indices with an element i' > p + 1. The intention is to

show that if

N

ER Min. D - c hl< F (2. 2.11)ip= 1

~~jcj

then,

ER 1) Jf -chj E (2. 2.12)
i II,

for any I'.

The statement (2.2.12) can be provwd aE- follows:

A ''" - ~ m



ER <~ E
p+1

E fE BICAUSE il > p+1
p+1 i

E I is the minimum error obtained by deleting ith basis

function plus some other ones, as well. Hence,

E < E
it I

and,

E R <E EB < E
p+1 it It

'Lhus, at any point, if the statement EP ( E P+Iis satisfied,

n~o further search would be necessary. However, if ER .~EF

is never satisfied, all the possible subzr-ts will be

examined to. sele.ct the best cne.

To show the power of this alqorithw, som.o num~-:ical

examples will be presented in the following chapters. Also,

a windowing technique will be applied to improve the

efficiency of the algorithm.

III -'Olga I T ~ -
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CHAPTER 3

FILTER SYNTHESIS

3. 1- Introduction

A finite-duration impilse response (FIR) filter can

be represented with a set of coefficients and delays as

depIcted in Figure 3.1. The frequency response of such a

filter is of the fcrm shown by equation (3.1.1) . The

object is to design an FIR filter to have fewer

coefficients than equivalent conventicnal FIR filters,

while meeting the same performance objectives.

7-i

Figure 3.1

H(w) h (nT) .EXP (JwnT) (3.1.1)

Instead of processing all the input data over a given

record length or a subset of uniformly spaced data
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elements, we choose the best H data elements for achieving

the desired performance. The fewer the coefficients, the

fewer multiplications will be performed, since each

coefficient correspcnds to a multiplication directly. The

complex subset selection method is used to achieve the goal

of selecting the best subset of data elements, from a given

interval of input data, to be processed by an FIR filter.

3.2- Formulation Of Design

The desired FIR filter is a lowpass filter(LPF)

havinq a passband, a stopband, and a 'don't care' (3)

reqion as depicted in figure 3.2. The desired frequency

transfer function, D(w), is real valued and symmetric about

frequency zero. Assuminq that sampled data is to be

processed with a memory no greater than 2qT seconds, or

(2q 1) samples, we can approximate D(w) using all the

available data by a PIP filter with tran:feL function A (w)

qiven in formula (3.2.1).

Figure 3.2

'=- " ' - . , L '. :- - ,; i

f ........ . i 4 .. -
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A (v) = a (nT) EXP(JvnT) (3.2.1)
n=-q

There is no loss of generality by choosing zero phase for

D(w), because one can easily synthesize a linear phase

filter by shifting the impulse response of this filter

properly* Thus, the ideal filter is defined by equation

(3.2.2).

1 P lwk< p
D(w) = , sl < IwI < s2 (3.2.2)

on't care, otherwise

Let the observation time be kept fixed. That is, q and T of

(3.2.1) satisfy the formula

2qT = constant. (3.2.3)

Using complex subset selection, D(w) can be approximated by

a subset having fewer coefficieLts in the same observation

time (M < 2q 1) shown by equation (3.2.4),

H(w) = h(n) EXP(JwT ) (3.2.4)n=1 n

where the Tf is may or may not be uniformly spaced. Using

the method of comflex subset selection, the large set of

basis functions of the form FXP(JwnT) are the potential
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basis functions of (3.2.1) in which

nth basis function =EXP(JwnT) (3.2.5)

n=

N = 2q + 1 *(3.2.6)

A best subset having MI coefficients is selected from these

N basis functions such that the least squares Error between

D(w) and H (w) is minimized, i.e.,

( 12
Min. Error 9 W(w) D (w) -h(n) EXP(JwT )dw

Sh (n) uT} (3.2.7)

where

F1 w p and s 1< w \<s2

W(w) {(3.2.8)
and the T Is are selectcd out of' th#e set

(-qT,**.. -T,O,T,* .. ,qT).

From the orthogonality principle (14$) for optimum choice .f

the h(n) s, for given valuc-s cf thco T Is, it fol~lows ti -it

( NjW(v) (D(w) ->Ih(n) EXP(JvT )).EXP(-JwT ) dw = 0
n=1 n k

for k =1,2,... ,N (3.2.9)
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which can be rewritten as a set of M linear equations of

the form

AH =B (3.2.10)

with

a a .,.,.a
11 12 i

A a go(3.2. 11)
21

T -

H [h(1) h (2) ,....h (M) (3.2.12)

T
B [b 1 b 2 #******obj (3. 2. 13)

where

(2/ (T -T ))(Sin (s2 (T -T )-Sin (sl (T -T )

4Sin (p (T -T ))) ij

a -(3.2.14)

2(s2-sl+p) j=j

[(2/ (T))Sin (PT ) T /0

b (3. 2. 15)

L 21)T =0
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H I B (3.2. 16)

For the detailed derivation of the equations (3.2.9)

through (3.2.17), see appendix A.

Since A and B are both real valued matrices, the

solution to the equation (3.2.16) results in real

coefficients for the filter (i.e. h(n)'s are all real).

Solving for H and substit'itinq in the error function of

(3.2.7) is equivalent to simplifying (3.2.7) using (3.2.9)

The result is

M

Min. Error = 2p - 2 h(n) Sin(pT ),/T (3.2.17)
n=1 n n

J h (n)J

in which Ih(n)j satisfies (3.2.9), or equivalently

(3.2.16).

The results cbtained here will be compared with a

filter having uniformly spaced values of T with frequency

response given by (3.3. 1), and we claim that the complex

subset selection will always result in a better

approximation to a desired ideal filter, or at least an

approximation as good as the one obtaincd by the

uniformly-spaced method. The uniformly-spac*ed method is a

search for only a constrained set of possible solutions,

and many other possibilities are simply ignored. On the

other haud, whenever ccmplex subset selecton is used, all

possible approximations are considered . If it happens that



18

the best solution is unifoi mly spaced, it will be included

as one of the possible solutions +o be examined.

3.3- Filter With Uniformly-spaced TiL~e

Samples

The filter obtaine-d by the comrlex subspt selection

will be compared with ancther filter which uses

uniformly-spaced time samples. For this filter, the

observation time (2qT) is fixed and the number of the

coefficients (M) are the same as befoie . But, the basis

function parameters must be spaced uniformly from an

--~tal location 'c' aE! illustrated in figure 3.3.

C

Figure 3.3

The frequency response of this filter is of the form shown

by equation (3.3.1) , assuming that M is an odd integer of

the form N=2l1

H (w) =Lh (n) EXPl(3(n&+c) v) (3.3.1)
u n=-l u
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if, for fixed values of A. and c, we minimize the error

given by

Error = W(w)jD(w) - Hl(w) dw (3.3.2)

by choice of the coefficients h(n) , We obtain, using the

orthogonality principle (14), the set of simultaneous

linear equations

A'H = B' (3,. 3.3)

in which A' and B' can be evaluated from (3.2.9) by letting

T'=nA+c . The coefficients {hu(n)V are also real since A'

ard B' are real-valued matrices.

In the search for the best c, it was found

numerically that the best c is zero for the best & for the

cases tried (fc,,r examples are illustrated in table 3. 1

where the C was searched in the interval 0.0 to 3.0 with

increment .1, and best , was searched in the interval 0. to

2.5 with increment .1). Therefore, we tried to prove this

aralytically. However, after investigating many different

methods, we could orly show that C=O is a good candidate

for best C, and could not prove its uniqueness. One method

is to differentiate the error function with respect to c,

and set it to zero. The error function is 3f the form
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E = 2P - 2I h (n) SPi(n&4 C)P)/(nA+C)
n=-I u

= 2P -BTAI BO (33.4)

in which A' and BI are matrices from equation (3.3.3). The

BI matrix is dependent on c, whereas the A, matrix is

independent of c. Differentiating (3.3.4) with respect to c

and setting it to zero, ve have

T -1 T -1
dE/dc =-(dB' /dc)A' BI B' At (dB'/dc)

T -1
=-2BI A' (dB'/dc) =0 (3.3.5)

b =2Si'n ( (n&.c) P) /(nA+c)
n

db /dc =2( PCos((n.e..c)P)/(nl+c)
n

-Sir ((n,6+c) P)/((rA+c) **2) )(3.3.6)

dE/dc = jj.6 Sin ((nA+c) P)/ (nA+c)
n=-l m=-l

1P Cos ((mA4+c) P) /(mA+c) -Sin ((mu6+c) P) /( (mA~c) *1

a' (a, M) (3. 3.7)

where a' (i.,,m are elements of At Since A' is a toeplitz
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matrix (see equations (3.2. 11) and (3.2.14) ),it follows

that

a'(n,-m) a' a(-n,m) (3.3.8)

and

dE/dc =)~ Sin (nP) /n4,.( PCos(-mAP)/(-mA)
n=1 m=-l

-Sin (-MAP)/( (-mA) **2) a' (n,-m)

+ s in (- nA E) /1&.( P.C S (M.;P) /MA

-Sin (m46P)/(m. ) **2) a Ia (-r,,m) =0. (3.3.9)

Thuc c=0 is a solution of (3.3.5) , because all the terms in

(3.3.7) cancel one another for c=0. Since we have not been

abl=e to show analytically the uniqueness of c, we search

for the best c as we do for the best A

In the next section, some examples are pre:sented iii

order to explain the differences of the two filters.

3.4- Pesults And Examples

Presented here are the results of the comparison of

the two filters discussed in sections 3.2 and 3.3. Many

examples have been investigated, and only two will be

presented here to show the differences in the two filters.

In both examples, 21 basis functions are used with

arguments wnT, (n=-g,e...O,...,q ,and T=.5), and the
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subset size is 5 (M=5). The results are tabulated in tables

3.2 and 3.3 for which the following observations are made.

Of course, these observations aLe drawn from the

investigation of a large set of examples.

a) The least squares error is smaller for the subset

selection filter than the uniformly spaced parameter

filter.

b) The magnitude response is flatter in the passband

region in the subset selection filter case.

c) The magnitude response rolls off sharply in the

transition-band for the subset selection filter.

d) However, the maximum sidelobe level is smaller for

the uniform parameter filter.

The above observations can be seen from tables 3.2 and 3.3

aLd also from magnitude response plots of figure 3.4 and

3.5. The freqnency response is symmetric about frequency

1/2T, where T is the sampling period. Since the smallest

sampling period for 21 basis functions is T=.5, all

frequency responses are plotted over frequencies 0 through

1 hertz (1/2(.5) = 1)

It was also noticed that the nonzero coefficient

locations are moved toward (or away from) the midpoint by

m

2_=__ @ = ---- .. ... .2" -:-"--,- ...... '.' -: '" ' - 2 2 _i -. '..'-' .. ...... ~t. .. .. I . ... ...... .. ... ... -*,-. -,% - ,- ' ", " ,":- oi: -.- " ' ' -'I
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increasing (or decreasing) the passband width. That is, the

coefficient locations are around the midpoint for a wide

Pessband, and farther away for a narrow passband. The plot

in figure 3.6 shows this effect wheye the abscissa is the

second term in equation (3,3.2) ~ I.h (n).Sin(nA)p/nj),

and the ordinate is A Each curve is for a different

passband value while each peak represents the best 4 for

that specific passband value.

*S~ - . -



24

TABLE 3.1a

P=.15 S1=.2 S2=, 5

EFRCB FOB ERROR FOB EPPOR FOR
c &..5 6,=1.0 4=1 .5

0.0 .144201 .092526 .162134
0.1 .147396 .093267 .161562
0.2 .156949 .095505 .159873
0.3 .172754 .099286 .157136
0.4 .194671 .104690 .153471
0.5 .222486 .111818 .149040
0.6 .255916 . 120801 .144044
0.7 .294664 .131788 .138728
0.8 .336348 .144936 .133360
0.9 .3EE559 .160419 .128241
1.0 .438853 . 178403 .123094
1. 1 494751 . 199062 .120051
1.2 .553746 .222544 .117660
1.3 .61, 326 .248993 .116866
1.4 .678959 .278519 .118011
1.5 .7414113 .311209 .121422
1.6 o810252 .347113 .127416
1.7 .876849 .386238 .136278
1.8 .943399 .428554 .148261
1.9 1o.00941 .473985 o.163603
2.0 1.07444 .522403 o182472

Best C 0.0 0.0 1.3

ERROR .144201 .092526 .116866

doom-
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TABLE 3*lb

P--.1 S1=.2 S2=.5

ERROR FOR ERROR FOR ERROR FOR
c A .=0.5 A =1. 0 4=1.5

0.0 .103650 .032061 .036306
0.1 .104927 .032794 .036345
0.2 .108742 .034986 .036466
0.3 .115084 .038536 .036681
0.4 .123900 .043731 .037008
0.5 .135168 .050260 .037473
0.6 .148798 .058206 .038109
0.7 .164734 .067545 .038957
0.8 . 162873 .078256 .040061
0.9 .203121 .090311 .041470
1.0 .225369 . 103673 .043241
1.1 .249L488 .118313 .045435
1.2 .2'15352 .134188 .048111
1.3 .302826 .15125q .051339
1.4 .331759 . 169477 .0551-75
1.5 .3E199E .188798 .0596q7
1.6 .393391 .20S166 .064967
1. 7 .425772 .230528 .071049
1.8 .458985 . 252826 .078011
1.9 .4S2862 .2-)6001 .085911
2.0 .527239 .2S,9990 .09 4 07

Best C 0.0 0.0 0.0

Error .103650 .032061 .036306
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TABLE 3. ic

P=. 15 S1=.225 S2=.5

EPCP FOR ERROR FOR ERROR FOR
C 4=0.5 g=1.0 A",= .5

0.0 .093154 .068523 .154084
0.1 .096298 .068842 .153555
0.2 .105711 .069827 .152005
0.3 .121291 .071544 .149489
0.4 .146899 .074114 .156113
0.5 .170340 .077695 .142028
0.6 .203352 .082489 .137417
0.7 .241646 .088724 .132498
0.8 .284865 .096650 .127518
0.9 .332622 .106542 .122751
1.0 .364496 .118675 .118493
1.1 .440033 . 133334 .115049
1.2 .498750 .150784 .112741
1.3 .560160 . 171278 .111889
1.4 .623744 .195045 .112813
1.5 .688995 .222276 .115825
1.6 .755392 .253120 .129281
1.7 .822430 .287677 . 129281
1.8 .889607 .326001 .140256
1.9 .956452 .368084 .154369
2.0 1.02250 .413856 .171806

Best C 0.0 0.0 1.3

Error .093154 .068523 .111889
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TABLE 3.1d

H=5
P=.I S1=.225 S2=.5

ERROR FOR ERROR FOR ERROR FOR
C & =0.5 4=1.0 A = 1.5

0.0 .062489 .018249 .036055
0.1 .063793 .018802 .036085
0.2 .067678 .020460 .036176
0.3 .074139 .023223 .036341
0.4 .083124 .027090 .036599
0.5 .094604 .032058 .036975
0.6 .108495 .038125 .037506
0.7 .124734 .045289 .038225
0.8 .143224 .053546 .039182
0.9 .263868 .062889 .040426
1.0 .186553 .073311 .042016
1.1 .211153 .084809 .044006
1.2 .237535 .097367 .046464
1.3 .265566 .110980 .049453
1.4 .395094 . 125629 .053040
1.5 .325968 .141302 .057292
1.6 .358029 .157980 .062277
1.7 .391109 .175643 .068061
1.8 .425056 .194265 .074711
1.9 .459692 .213823 .082287
2.0 .494855 .234284 .090E47

Best C 0.0 0.0 010

Error .062489 .018249 .03b055

I
-' '' '.
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TABLE 3.2

N=21 =
f =.15 fS =.2 fs =5

Fi lt er Un if or m Subset
wtith N parameter selection

coefficients filter filter

coefficient nT n kTn

M~ax. passband .677 1.3 .73
le-vel (db)

* naqnitude(db) -2.6 -4. 5 -3.5
at f

*magnitude (db) -12.9 -10.1 -17.1
at f

M~ax. sidelobe -25.2 -24.3 -21.0
level (db)

least squares .2096636E-01 .92527E-01 .7460785E-01
error
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fil8

'00 0.20 0140 0o .00 11.00
FREQUENCY -HZ

Frgure 3.4a- Frequency response of filter

having 21 coefficients with f .15, f:2

and fs2.5
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S 0W cf

FftEDUENCY-IIZ
Figure 3.4c- Frequency response of subset

selection filter having 5 coefficients with

f Z-15, fi -.2, and fs2=.5ps12
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TAbLE 3.3

N=21 M =5
f =.20 f -93 f =05

PStS
Filter Uniform Subset
Vith N parameter selection

coef ficients filter filter

Coefficient nT nA T
location n=-101000,10 0,05-i0 0, .0;3

max. passband .30 1.2 .47
level (db)

magnitude(db) -.93 -3.8 -1.7
atf

magnitude(db) -21.8 -12.4 -15.1
at f

Max. sidelobe -32.7 -27.0 -25.1
level (db)

least squares .2613C%-7-32 .7927OF-O1 .1487637-,>Ol
El ror
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Figure 3.5a- Frequency response of filter

having 21 coefficients with f =.2, fs~
p s

and f2.
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Figure 3.5b- Frequency response of uniform K
parameter filter having 5 coefficients with

f 2, fsi 3 and fs2 I
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+ FOR P. a15
X FOR P a .10

gFOR P a.05

r-I

Delta

Figure 3.- IA.B(variable part of the

error function) for different values of

'delta and passband width.
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CHAPTER 4

ESTIMATION OF THE FREQUENCIES

OF SINUSOIDS

4. 1- Introduction

This chapter is devoted to the problem of

estimation of the frequencies of sinusoidal tones by the

complex subset selection method. In this case, the function

to be approximated contains some tones with specific

amplitudes and frequencies in the presence or absence of

noise. We consider the case of two sinusoidal tones, but

the method can be extended to more tones at the cost of

more computation.

The framework of this problem will be developed in

section 4.2; while the frequency estimation will be

presented in section 4.3 . The presencE of Gaussian noise

in the data will be investigated in section 4.4, and

finally section 4.5 will contain some numerical results.

4.2- Two Tone Approximation

The signal tc be approximated contains two

sinusiodal tones with each tore having amplitude and

frequency (AI,F1) and (A2,F2), respectively. Al and A2 can
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be either real cr ccmplex.

S(t) = Al ExP(j2lTf t) + A2 EXP(32TFf t) (4.2.1)
1 2

A data vector y is formed from N samples of above function

(4. 2. 2).

T [Y(O) 'y(1)1 *.....1y(N-uJ (4.2.2)

y(n) =S(nT)

The complex exponential basis functions used here are

h (t) h (t).......h (t) withI arguments of the form 2rrflt
I ZL

h (t) =EXP(j27'f t) for I=1,2,....,L (4.2.3)

A vector is formed for each basis function with N samples

taken from each of them

H h~ (0) h (1) ......h1 (N-1)j for: I1,2#.**,L

with (4.2.4)

h (n) EXP(j2TTf n)

and

o < f < f <111... < f < 1
1 2 L
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Due to the periodicity of exponentials with an imaginary

arguments, f Lshould be less than one, That is

EXP(J277f n) = EXP(J2T(f - 1)n)
L L

Having H Is for basis functions, we want to

appcoximate the data vector Y by the complex subset

sel~ection method with minimum least squares error. In

another words, we want to cboose M functions from the L

basis functions to best represent the data vector, Y in

.z- der to minimize the sum cf the squares of the errors.

Assume Y is the data approximation vector of the form

Y LZ c u =UC (4. 2.5)
k=1 k k

where Ui is a vector formed from li-column vectors Ui Is and c
K

is a N-dimenSional complex coefficient vEctor.

T
C =c LCicu......C] (4,2.6)

U U [U , .... 1 (4.2.7)
10 2'

T r
U u (0) *u (1) 0......U(N1 (4. 2.8)

k k k k

u (n) =EXP (Jw n) (4.2.9)
k k
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'1 2

Note U Is are chosen from H Is ,and w.Is are selected from
K 1

2 Trf 1 Is* The error function is

Mine Error = E =II ,Y~ (4.2.10)

{C,w I

where means the L2 norm of the vector.

To minimize the error one has to find the optimuw

coefficient vector and frequency vector to be used in

specifying Y.

For the optimum ;oefficiciit vector ,the

ort oqonality principic. -ndicate ; that Y-Y m ust be

orthogonal to every U1 with 1=le.*.,l o(* necai conjugate

transpose).

U (Y -Y) =0 for 1=1,2,.....,M (4.2.11)

U Y =U Y for l~,,..,i(4.2.12)

U UC =U ! for l=1,2,eee a r1 (4.2. 13)

Let A =U U, and B =U Y,THiEN

AC B (4. 2.14)
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where

U U U U ...... U U
1 1 1 2 1iN

A=

wi~.th

U a LEXP (J(W -W))
1 k n=O k 1

Tt

B LUiYU YwseoeU Y] (4. 2. 15)

*N-i
b =U Y =-y(n) EXP (-Jv r) (4. 2. 16)

1 1 n=O 1

Thc- solution of the linear equation (4. 2. 14) will1 give the

optimum coefficient vector C. Thus, the error iurnction

becomes

2 2
E :,fl (y ") (Y - Y)

Y (Y -Y) -Y (Y -Y)

(Y -Y) - C U (Y - Y) (4.2.17)

The right side of the above equation can be simplified by
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using equation (4.2.11).

2 * -2 *

E = (Y -Y) Y

= fYJ 2 - Y -C *JJ2

2 -1
= jyj _ B A F (4. 2.18)

2 2 N-i 2 M
E = jyj B ('y(n)1  -Tc y(n) EXP(-Jw n)

jJ -BCn=O k'= Ik k

(4. 2. 19)

Let us choose the frequencies f,'s of the basis

functions to be uniformly spaced. Hence ,the functions

will be of the form

b (n) = XP0(21TfIni (4. 2.20)

such that Af=1/L is the difference between two consecutive

qzid points. The goodness of the approximation --s depende3nt

on L and N, namely, the number of the basis functions and

the number of the samples, Since 4f=1/L , any increase in L

will result in having denser grid points which in turn will

iticrtase the possibility that fl and f2 to be on the grid

Pointso 01 and f2 being on the grid points meanis that two

Of the basis functions can exactly apprcxi mate the data

w~or~On the other hand , large N means !avinq more- data

Points to process wbhicI, will also rostilt in better

'7' --
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approximation. But L cannot get too large, because the

amount of the computation will get impractical for large L.

Thus , the windowing technique described below will be

applied whenever very dense grid points are nseded.

4.3- Freguency Estimation

In some apyllicaticns one has to estimate the

frequencies of the tones as accurately as possible. In

those cases, we set the number of the basis functions M in

the selected subset to be equal the number of the

frequencies contained in the signal. For example, when we

are estimating two Einusiodal tones we soet M=2. But a very

dense set of grid pcints is needed in order for the

estimation to be accurate, and hi.vinq a very dense grid

points is impractical computationally since the amount of

the computaticn will increase significantly as the number

of the grid points becomes large. To get around this

,eficiency, we introduce the windowing technique below.

The windowing technique is applied whenevcr the

grid points (number of basis functions) are large, and the

search for a best subset needs too much computer

processing. In those cases, a best subset is selected from

a less dense grid as a first step. I, second step, a denser

orid is chosen around the selected subset grid points of

step one. As step three, a new best subset is selected from

the nzw grid points of step two. Then, step two aid three



repeated until no changes are noticed in the selected

subset and the error function. One should notice tha-. in

the first attempt, potential basis functions are selected

where in the second attempt a new set of basis functions

are established which are densely populated around those

selected potential basis functions, and the best subset is

selected. Graphically, the windows in Figure 4.1 indicate

where the new densely Fopulated grid points are to be set.

Figure f4.1

To clarify tle iuindowirnq technique, let us -take a

lock at the two-tcne siqual, with frequlenlCioz f1=. 25 and

f2=.725. Choose only -ten qrid poi-nts uniformly spaced irom

zero to one, for the first step. Thus, the harns functions

are

h (n) EXP(J2 TflIn) I=0'1,.. '9
I

with L=10 ,and grid points

(0. 0 1 0.2,.. 00. 9)

of which 2 are selected as potential furctions. Assume
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pth=.3 and qth=.7 are selected. In the next step, we use

the following ten new basis functions around the pth, and

qth:

h (n) E= P(2J~+ FI-)n 1=0,1,2,3,4

h (n) EXP(J2T(q+Af(-7))n) 1=5,6,7,8,9

with L=10, and grid pcints

Note the new g~rid pcints are one-half of the previous sten.

The complex subset selection algorithm is again used to

select two potential functicns from these new basis

functions. in this case, second and nineth (p=.25,q=.75)

are selected. Again, choose another ten basi$ functions

with grid points around .25,and .75

h (n) =EXP (J2TT(p+--(I-2) )n) 1:0,1,.. 4

with L=10, and new grid points

(.2,. 225,.25,.275,.3,.675,.7,.725,.75,.775).
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Continue as before until the selected frequencies and the

error do not change very much for a denser grid points. In

this case .25 and .725 are the selected frequencies . The

above example is listed in Table 4.4.

If at any time, two windows overlap, that is, two

selected frequencies are close to one another, use one wide

window instead of two as depicted below.

Figure 4.2

The program listings for the two frequency estimation by

subset selection and windowing technique are in appendix B.

4.4- The Effect Of Additive Noise

The approximation of a two-tone signal was

investigated in secticn 4.2. But, it was for deterministic

signals, and in almcst all practical applications the

received signal is purturbed by some kind of noise. In

hLre, we investigate the additive Gaussian noise which is

the yeneral case for most systems.
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Recall the data vector ¥ (4.2.2) which was obtained

from a deterministic signal, only. Now we form a new data

vector from signal vector S with noise vector V added to

it.

Y= S V (4.4.1)

V = [v(0) v(1) 10 ,**aav(V-l) (4.4.2)

Note that each vector in (4. 4. 1) is N-dimensional. Assume V

consists of complex, independent, zero-mean Gaussian noise

components with known variance.

By a close look at linear equation (4.2.1 ) , one

will realize that the noise will affect the B vector ,

only. That is, each row of B is changed by a amount due to

the inner product of the noise vector and the corresponding

U vector (where subscript corresponds to Ithe row.)

B = U Y = U S + U V (4.4.3)

Therefore, the same procedure as before is used to find the

coefficient vector , selectcd basis fuction parameters,and ',

the error function with new data vector.

The effects of Gaussian noise in tone parameter

estimation has been well investigated by David C. Rife (8).

He has used a multiparameter gtneralization of the

Cramer-Rao bound (C-R Yound) to establish lower bounds for

variances. He has also shown that the single-tone bounds
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are the minimum values attained by two-tone bounds, and

they are attained wher the two tonez have wide frequency

separation. Thus, one can use the single-tone bounds

(4.4.4) for two-tone bounds whenever two frequencies are

far apart,

A 2 22 2var(w | (12 6 /(b T N (N 1I) (4.4.4)
i i

where

A
w frequency estimate in radians

i
2

G noise variance

b tone amplitude
i

T time between two samples

N number of samples

In the next section, this C-E bound is compared

with the measured accuracy in frequency estimation which is

obtained by applyinq the complex subset selection algorithm

to simulated data.

4.5 Besults and Examples

Presented here are numerical results for tone

estimation by the complex subset selection method. The

exaples are chosen frcm three qroups to show the power of
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the complex subset selection method, the windowing

technique for frquency estimation, and the effect of the

noise.

In the first example, the signal contains two tones

with amplitudes and frequencies (A1=1.,A2=1.),

(F1=.2,F2=.4), respectively. Twenty basis functions were

used where the frequency separation of the basis functions

was .05 ( f=.05 , grid point separation ). Subsets of size

5 (M=5) were searched, and the best one was selected after

only examining 136 subsets. This is a small fraction qf all

possible subsets (20!/(15!5!) = 15504). However, the two

frequencies were exactly on the grid Fcirts. This example

is illustrated in table 4.1 along with the re-ordered 2'

errors. For the second example, the amplitudes and

frequencies were (A1=1.,A2=1.) and (Fl=.2 , F2=.585).

Fifteen basis functions with frequency separation .05 were

used. In this case, cne cf the frequencies was off the grid

points, and subset size 8 were used. Frequency F1 was

selected exactly along with frequencies around F2. Note

that frequency .6 was selected with a large magnitude which

is the closest frequency from the set to F2. The subsets

examined were 1716 which are less than 2' per cent cf the

total possible subsets (15!/(8!7!) = 6435). This example is

illustrated in table 4.2

The third example was picked to show the

improvement obtained by windowing tichnique. Thus, the

amilitudes and frequencies weie chosen to b the same as
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example 2. In this case, the selected frequencies were .2

and .58437 after examining only 271 subsets. It was

observed that the windowing technique offers better

accuracy while the number of subsets examined are kept

small. This example is illustrated in table 4.3 along with

three more examples in table 4.4 to show the efficiency of

this techique. Note that the results are very accurate,

even for two tones with small frequency separation.

The next example is an illustration of frequency

estimation in the presence of Gaussian noise. Five

different signal-to-noise ratios (SNR) were used, and in

each case the frequency estimates were averaged over 100

runs to evaluate the rean and the standard deviation. The

results were tabulated in table 4.5 along with thenir

cerespondig C-R bounds. For high SNiR'S, the standard

deviations of the estimates were consistan- with the C-R

bounds, but they differ for low SNR's due to the occurrence

of the outliers. Outliers are extrcme observations, and

they create great difficulty. When we encounter one, our

first suspicion is that the observation resulted from a

mistake or other extraneous effect, and hence should be

discarded. A major r:ason for discarding it is that under

the least squares method, a fit curve is pulled

disproportionatly toward an outlying observation because of

the squared diviations is minimized. This could cause a

misleadinq fit if indeed the outlier obsevation resulted

fi m a mistake or other extraneous cause. On the other
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hand, outliers may con" y significant information, as when

an outlier occurs because of an interaction with another

independent variable omitted from the model.

Two frequency estimation has recently been

investigated by Kumaresan (15) in a different fashion. in

his study, Kumaresan searches over the entire error surface

to locate the minimum error, and therefore, the

ccrresponding two frequencies. The same example has been

run by his method and the results are listed in table 4.6

for comparison. Both methods give relatively identical

results, and consistant with C-R bounds.

A small example with 10 runs is listed in table 4.7

to show how the output frequencies differ from the true

values for each run. Two more examples are illustrated in

tables 4.8 and 4.9 to show the estimation behavior of the

two frequencies when the frequency separation is very

small. The results in table 4.8 are corsistant wth the C-P

bounds whereas the results in table 4.9 for stronger tone

are lower than the C-R bounds due to the use of information

about the tones magnitudes. That is, we have suplied wore

information than assumed in the C-R bounds for the

estimation of the frequencies.

The C-R bounds are for unbiased estimation. We

assume that our method, too, gives unbiased estimation

since our results are consistant with C-R bounds, and try

to show that this assumpticn is correct by analyzing the

rc.sults.
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Ve assume, as a working hypothesis, that the

frequency error has a normal distribution with zero mean

and standard deviation SDT. Then if our frequency error

mean falls in the interval -SDT to SDT, we could say that

the data is consistant with our zero-mean hypothesis to

that accuracy. Since ye have 100 independent runs, the

probability density function of the frequency error is a

chi-sguare distributicn with 100 degrees of freedom which

can be approximated accurately by a normal distibution (16)

having the same mean and variance. Let us assume that our

experimental standard deviation (SD) is in error by +20%

from the true SDT (i.e.. SDT (1.±.2) SD) * And let us choose

thE worst case, namely SDT (1-.2)SD . If the frequency

error mean is in the intcrval -SD7 to SDT , we will say

that with high probability it is an unbiased estimation. By

checking table 4.5, we observe that evcn for low SNfl , thc

frequency error mean falls in that interval. For ixistaiice,

when SNR =5db;

A
F1 -1 = .906E-3

SD1 = .772E-2

SDT =(1-.2)SD1 =.6176E-2

SDT/(F1 - fl1) 6.82

-SDT < F1 - P1 < SDT

and therefore, our aEsumption is probably corr. ct.
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7A.BLV/ 4.1

NO. OF SAMMLES 8
A1=0.1000ID 01 A2=0,100011 01
FI=0.2000D 00 F2=0.40001D 00

N=20
E( 3)=0#1703591D-13 NO. I SMALLEST EIRIOI
E( 4)=0.2899026r'-12 NO 2 SMALLL'ST ERROr*
E( 2)=0.5724064D-12 NO. 3 SMALLEST ERROR
E( 5)=0.8619378D-12 NO. 4 SMALLEST ERROR
E( 6)=0.2004521D'--1i NO. 5 SMAL.LEST ER [R"FOR
E( 1)=0.3271099D1-11 NO. 6 SMAI.LLE:ST EARROR
E( 7)=0.89958821-11 NO. 7 SMA L LE ST ERrk'0f:
E( 8)=0.29521681'-10 NO. 8 SMALL ..ST ERIRO
E( 9)=0.971.80231'-10 NO° 9 SMALL EST ER ROR

E (20) =0. 1602580r'-09 NO. I0 SMAiLL.. FST ER ROr,
E(10)=0.1609581D-09 NO. :11 SMALL ESr Error
E( 11 0).16 5 5543 D-09 NO - 12 SMAi L rsr F rkr)I
E (12) =0 16622708D-09 NO. 1.3 SMAL..US T [kR'RR
E (13) =0 1 664244 D -09 NO . 14 SMAI LLEST LRRkO1:
E( 14) =0. 166462 4o-09 NO - 15 SMA r1E.ST ERROFR',:
E(15)=0.166472711-09 NO- 16 SMALl. EST Fldhlk
E(1.6)=0.166474311--09 NO- 17 SMALLEIST U Ri0F'
E(1. ) O.. 1,664 748E-09 Nfl. 113F SMALLESt ER RTIR
E (19 ) 0 .1664 011 5D.-09 NO , 19 S MAI.. LEST f*IlROIf:
E (17)=0. 16641f6'Th--09 NO. 20 SMAILE S' ERRIkOl
N=20 M= 5
NO. OF SUBISETS EXAMINED = 136
D( 1) 0 20001 00 C( 1.)::(O.:1000 0:1 0.76J4 If ;
D( 2)=0.4000D 00 C( 2)((). : I00 1 0.1 0 0. 1 2 J1'*. 4
El ( 3) c*.,00000 00 C ( 3) (-.7160.i .] .... , 946D.. 14
f'( 4). 0.8500D) 00 C( 1 ) (0.1:1661 ...13 J :1017I,-13
D( S)=0.9000D 00 C( 5) (0.20961'-.4 * 0.1049D-1A'
EFROR= 0.9073D-1

...... .....
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TABLE 4.2

NO. OF SAhFPLES = 10

Al =0.'0000D 01
A2 =0..,, 0001 01
Fl =0.2 )OOD 00
F2 =O.,,.15001 00
E( 8)=0,1150485D-05 NO. 1 SMALLEST ERROR
E(10)=0.1152479rI-05 NO. 2 SMALLEST ERROR
E( 6)=0.1154274D-05 NO. 3 SMALLEST ERROR
E( 7)=0.1170815D-05 NO. 4 SMALLEST ERROR
E( 9)=0.1179624D-05 NO. 5 SMALLEST ERROR
E(13):=0.1238354'-05 NO. 6 SMALLEST ERROR
E( 1)=0.1276429i-05 NO. 7 SMAL.LEST ErROR
E(15)=0.12934291-05 NO. 8 SMALLEST ERROR
E(14)=0.1298690D-05 NO. 9 SMALLEST ERROR
E( 2)=0.1327334D--05 NO. 10 SMALLEST ERROR
E( 5)=0.1353965D-05 NO. 11 SMALLEST ERROR
E( 3)=0.1435813[-0 5 NO. 12 SMALL St ERROR

E(15)-.1,689951-05 NO. 13 SMALLEST ERPOI-*
E(12)=0.18613921)-05 NO. 14 SMALLF.ST ERfRoR
E( 4)-:0.19928:18D-05 NO. 15 SMAI. .LEST FFRROR:O

ERROR: 0. 183031-05
DI( 1)=0.2000r, 00 C = (0.99997D 00 -. -14C321-03)
1.1 ( 2) =0.4000D) 00 C = (.- 44293J,..02 0 777 1ID.-02)
D D( 3)=0.4500D! 00 C = (-.366/61---0 1 - .29364D--01)
D( 4)=0.50001, 00 C = (0.10543D 00 -. 959/7D-01)
D( 5)=0.55O0D 00 C = (0.2279511 00 0.346961i 00)
ri ( 6)=0.6000L, 00 C = (0°6P67611 00 -. 31457D 00)
rl ( 7):=0.6,)500b 00 C (O.' 299911-()1L 0. 841.3 51-0 1)
D ( 8)-=0.70001." 00 C = 0(-.12046D--01 0. 1325011--02)
NO. OF SUBSETS EXAMINEI 1.71.6

II

i1



TABLE 4.3

Ai=1,0O A2=1.0
Fl=.200 F2=.585

RUN Fl F2 ERROR

1 0,2000 0,60000 .68822E-1

2 062000 0,57500 .31433E-1

3 0.2000 0.58750 .19749E-2

.4 0.2000 0.58437 *12570E-3

5 0,2000 0.58437 .12570E-3

TOTAL. SUB~SETS EXAMINED 271
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TABLE 4.4

A 1=1. 0 A2=1,,0
No. of samples =10

Case I Case 11 Case III
F1=.2250 F1=.2500 Fl=.1750
F2=.3125 F2=.7250 F2=.5875

D1r .20040 .30080 -t0.2000
D2 0.3000 0.7000 0.6000

WINDOW 1
D1 0.2500 0.2500 0.1500

D2 G.3000 0.7500 0.6000

Error .3L485E-1 .1827E 0 .2037E 0

WINDOW 2ID1 0.2250 0.2500 017,50
D2 0.3000 0.7250 0.5750
Error .2367E-1 .2000E-5 .4829E-1

WINDOW 3
D1 0.2250 0.2500 0.1750
D2 0,3125 0.7250 0.5875
Error .2000E-5 .2000E-5 .2000E-5

WINDOW 4
D1 0.2250 0.1750
D2 C.3125 STOP 0.5875
Error .2000E-5 .2000E-5

ST~OP STOP
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TABLE 4.5

A1=1. A2=1.
F=.25 F2=.375NRON=10O No. of samples =12

SNFt PFl Fr- SD1 F2 ;2 - sD2

20 .24987 .125E-3 .1361-2 .37497 .314E-4 .148E-2

10 .24945 .547E-3 .424E-2 .37478 . 219E- 3 .456E-2

5 .24909 .906E-3 .772E-2 .37466 .375E-3 .828F-2

0 .24850 .15oE-2 .484F-1 .40651 .315E-1 .128E-o

-5 .32156 . 715E-1 .181E-0 .6109 .186E- 0 .2 37 -'0

SNP siqnal to noise ratio
D standard deviation
i mean estimate

Fi-Fi frequency error

TABLE 4.6

A1=1. A2=1.
Fl=.25 F2=.375
NRUN=100 NO. of samples =12

SN1 IF- 1 SDI V2- F21 SD2 C-il BOUND

20 .161E-3 .128E-2 .1460E-4 .146E-2 .133E-2

10 .250E-3 .573E-2 .230E-3 .550E-2 .420E-2

5 .230E-2 .14701-I .290E-2 .050E-1 .748E-2

0 *339E-2 .589E-1 .338E-1 *124E 0 ,133E-1

-5 .186E-2 .117E 0 .186E 0 .227E 0 .236E-1
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I

TABLE 4.7

* KN= 12 NRUN= 10
AI=0.OOOD 01 A2=0,lOOO 01
Fl=O.2500D 00 F2=0.4750D 00
SIR = 0.0 SNR =O.1O00E 02 NVAR=0.1000E 00

FREL11 FREQ-ERRORI FREQ2 FRFO-ERROR2
0.242.1871' 00 0.781259Pa-02 0.478125P 00 0.3121483A~-02
0,246875D 00 0.312509P-02 0.487500D 00 0.124998D-01
0.259375D 00 0.9374911-02 0.47656211 00 0.15623311-02
0O.253125D 00 0.312491D-02 0.478125D 00 0,312483r,-02
0.250000D 00 0.89407011-07 0.4703128 00 0.4687678-02
0.248437D 00 0,156259P-02 0.476562D 00 0.156233b-02
0.253125D 00 0,312491r.-02 0,47812511 00 0.312483)--02
0.248437E, 00 0.156259D-02 0.476562D 00 0.156233D-(02
0.251562P 00 0,156241D-02 0.464062D 00 0,10937714-01
0,250000D 00 0,8940708-07 0.492187D 00 0.171873D-01
MEANI = 0.250312D 00 MEAN2 = 0.477812D 00
MERROR1=0.312410D-03 MERROR2=::0.281233I-02
VARIANCE1=0.184570D--04 VARTANCE2-:0,55071ID--04
STDIVI = 0.429616D-02 57uIV2 0.74214611-02
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TABLE 4.8

A1=1.0 A2=1.0
FI=.5 F2=. 55
NRUN=100 NO. of sampl1es =12

SNR l ^F1 SDI 1F2 - F2 I Sf12 C-F< BOUND

20 I187E-3 *263E-2 .171E-3 1.262E.-2 .274"E-2

10 *281E-3 .851E--2 *359E-3 *859E--2 .860E-2

5 .718E-3 *152E-1 *453E-3 .155E-1 .153E-1

O *193E-1 .857E-1 .594E--1 *11GE 0 *272E-1

-5.420E -1 .167E 0 .321E-1 .179E 0 .484E-1
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TABLE 4.9a

All. A2=10.
F1=.25 F2=.275
NRUN=100 No. of sarples =12

SNR Fl IF1 - 'FiJ SDi F2 IF 2 - F2' SD2

20 .25078 .781E-3 .6'43E-2 .27515 .156E-3 .781E-3

10 .25467 .467E-2 .2241-1 .27402 . 984E- 3 .264E-2

5 .26035 .103E-1 .428E-1 .27361 .139E-2 .342E-2

0 .27495 .02'49E-1 .7 25E-1 o273431 a.156E-2 .391EI2

-5 .290961.409B-1 .8871-1 .27309 1.190F-2 i.5515E-2

TABLE 4.9b

All. A2=10.
P1=.25 F2=.275
NRUN=100 No. of samples =12

SNR C-R BD1 C-IP BD2

20 .717E-2 iV1E-3

10 .226E-1 .226E-2

5 *403E-1 .40O3E-2

0 .717E-1 .717E-2

-5 .127E40 .127E-1
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CONCLUSION

The complex subset selection algorithm was

described in chapter2. This algorithm was used in section

3.2 to design low-pass FIR digital filters with a small

number of coefficients using a weighted least squares error

criterion. Digital lw-pass filters with uniformly-spaced

time samples were discussed in section 3.3, and it was seen

ii section 3.4 that, for the same time aperture and number

of coefficients, the complex subset selection method

results in a) smaller least squares error, b) flatter

maqnitude response in the passband reqion, c) sharper

roll-off in the transition band, and d) higher peak

sidelobe level.

Tone estimation by the comF!ex subset selection

method was explained in secticn 4.2, and was extended to

frequency estimation in section 4.3 . The presence of

Gaussian noise was discussed in section 14.4 . The numerical

results were compared with the C-R bounds in section 4.5,

where unbiased estimaticn was assumed, and it was shown

that the results were consistant with the C-B bounds.

Finally, it should be mentioned that this method can be

applied to sulti-fzeqaency estimation with a little

modification, and with scme more computation.
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APPENDIX A

In this appendix, the details of the derivation of

digital filzer synthesis is presented.

w < <P

D(v) 0 sl < w < s2 (A.1)

Dntcare ,otherwise

1i jw p and sl 1wlI<s

W(w) (A.2)

H (w) h h(n) .EXP (JwT )(A.3)
nj=I

Where 7 Is are selected from a set {nT} with n=-qF.....,q

Min. Error V = D ()H(w) dw

Using orthoqonality principle (14)~, it follow.;.:

f(w). (D (w) 1i ()).EXP (-JwT K .dw = 0

for k=-1,***,M (A.5)
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JW (w) H (w) EXE (-JwT ).dw fWV(w) .D (W) EXP (-JwT K)dw

for k~,,*, (A.6)

A H B (A.7)

with

a 1a a I. a

A a 21(A.8)

B =[b ,.......,h (A. 10)

and

a.. =(W(w).EXP(Jw(T.-T;) dw EXP(Jw,(T. -T )).dw

+ EXP(WW( yTT)).dw + JEXP (Jw (T. -T.))dw

-(EXP (-J-,1 (T. -T. )-EXP (-Js2 (Tj -T* /0 )'(T. -T*

+ ( fXP(Jp(Tc- 2') EXP(-JP(T-T,)) )/J(T.-T,)

4(EXP(3s2(T -T-)) - FXP(Jsl(TC-T;) )/(-T

-2 CSin(s2 (TL -T,)) - Sin(sl(T C-))

+Sin (p(TTJ) ) 3/(T -- Ti (A. 11)

b. 3W (w)D (w.E X P(J wT .dw = JXP(-JvT.).dW
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[EP -,P7 E- P~ p (-TL 2Sin(pT 1 )/T~

(A. 12)

Therefore,

H=A B (A. 13)

Min. Error V3 U(W) D (W) - Zh(n) .EXP(JwT d aw

h(n),TM

i ~(W) (D (W) -Zh(n)EXP(JvT )).D(w).dw

(A. 14)

Min. Error =fIu(V)iD(w) l'.2

J1.aw -h (n) FXP (JWT fl.dw

2p - -h (ni). b (A. 15)

nw
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C APPENDIX B
C
C
C FOUR DEFFERENT PROGRAMS ARE LISTED BELOW
C WHICH EACH ONE IS FOR AN ESPECIAL PURPOSE.
C PROGRAM ONE AND TWO ARE FOR DIGITAL FILTER
C DESIGN WHILE PROGRAMS 3 AND 4 ARE FOR TONE
C AND FREQUENCY ESTIMATION.
C
C

C
C PROGRAM-1
C
C
C THIS IS THE PROGRAM LISTING FOR DIGITAL FILTER
C DESIGN BY COMPLEX SUBSET SELECTION.
C
C

C A(I,,J) A MATRIX
C COL(1) B MATRIX
C SOL-(I) COEFFICIENT MATRIX
C E(l) E1 ERROR FUNCTIONS
c AE(I) RE-ORDER ERRORS
C TN(I) BASIS FUNCTTON F;AAMFRS
C NO 0 IN EQUATION (3.2.1)
C M NO. OF COEFFICIENTS
C P PASSBAND EDGE
C Si LEFT STOF'BAND EDGE
C S2 RIGHT STOPBAND EIGE
C T GRID POINT SEI"ARATION
C
C

DIMENSION Y(IO1)
COMPLEX VERH(30),ETvBSS
REAL E(30),AE(30) ,TN(30) ,CT(io)
INTEGER IF'(30),IND(30)
INTEGER ICl(30),IP2(30)
COMPLEX A(30,30),Ai(30,30),ICXt(30),UOL(30)
COMPLEX SOL(30),SOLl1 (30)
DATA ACOL.PAI/900*(O.,O.),.30*0.0,900*(O.,O.) .,"

DATA INDDCOL/30*0,30*0.O/
READ(5,210)NQ,M,NOjF', $Il,S2,1
READ(5 v,220)MARK' ,NW, NP
P I=4. 0*ATAN( 1. 0)
NQ1=2*NQ. 1
IF(MARK.,O.I)GO TO 5
DO I I=INOI
TN( I I= I- N Q' 1 '
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1 CONTINUE
GO TO 8

5 READ(5v230)(CT(I)rI=N4
TH=T/2
DO 7 I=1,NP
DO 7 J=1,NW
TN(I+(J-1 )*NP)=CT(J)+(I-2)*TH

7 CONTINUE
NO 1=NP *NW

8 WRITE(6vl50)NOM
WR1TE(6v240PvSl.vS2,T
F'=P*2*Pl
Si S * 2 *PF
S2=S2*2 *FI

C
[I EVALUATION OF THE ELEMENTS OF A AND B MATRIX,

C EQUATIONS (3.2.14) AND (3.2.15)
C

DO 32 I=1YNO1
DO 20 J=IPNQ1
TIJ.=TN(I )-TN(,J)
IF(TIJ.E~q..)GO( TO) 10

6O TO 20
10 AU ,J)r-2*(S2-Sl+P)+.0001
2-0 CONTINUE

IF(TN(T).En.0.)GO 10 30

GO TO 32
30 COL (I )2F
32 CONT INUE

CALL AflERIV(ACOLvHPET 1,NO)

bJITE(6, 190)E'l 1
C
C EVALUATION ANDE PLOTTING3 OF TUE F" REPJENCY REU;FONSC.
C FOR THr FILTER IP'ING ALL. THWFtfP;IB I- U~.Nr IIONS

NO 1 -NDI

L: 0
rIO 3,9 :UriNOZ
V)=Cmr:L-XrO (0 p0.)

DO 3? J=IYNQ1
X=2*'I *L*TN (.J) /N()
V=V+Hl(J)*CEXF(CMPLX(0. ,X))

37 CONTINUE

'H I )'CAPS(V)
Y(l)=20*ALOG(Y(1)4.0000001)
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38 CONTINUE
Bx=I.I.NO
CALL FPLOTT(YNO1.O. uDX,2.5v,-100.0)

C
C EVALUATION AND RE-ORDERING OF El ERROR FUNCTIONS*
C EQUATIONS (2.2,9) AND (2,2.10)
C

NS=NQI-1
DO 40 IE=lPNOI
CALL LIELT(ACOLvAl vDCOL.NQ1 ,NSr IE)
CALL AHERV(AlvDCOLSOl.,ET1,'N3)
ETI=2"*F'-ET1
E( IE)=ETIl

40 CONTINUE
DO0 60 K=lrN01

IP(K )=-K

DO 50 LP----,Nn~l
IF(AE(K).LE.E(LF'))GO TO 50(

530 CONTINUE
E(IF,(K))--KIE 6
WRTE(6170)IF'(I)vAE(K)vK

60 CONTINUE
C
c FBEGINING OF THE SEARCH FOR' D3EST SUrF 1. T
C

NR.=NO1--M
1.1 70 1= 9
JD(l1)=1

70 CONTINUE
11O so J=lyM
INlt(J+NR)=O

80 CONTINUE
IE=-1
M P NP R+ I
8FR--AL (MP)
KR F- I
KF'T =l
mI-M+l
ETAN:=1.0E 6
iO -)o I*T=1,MI
IF(]T.EPfl)GO T0 0~2
KP=(KP*(NR+IT-2)/(TIT-1)
K FT=KPT +KF*

82 DO 86 K=1vKF'
IF(IT.EP.1)GO TO 83
CAL.L COMLO(NDNo1,NRvNr'

83 CALL INTG(ACOLAI,ruCOL,1HTN~tlf'w,FJ,401,1Np w;.IIA-

.4.,'
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CALL AHERIV(A1FDCOLPSOLPET1,NS)
ET1=2*P-ETI
ETA=ET1
IF(ETA*GTETAN)GO TO 86
ETAN=ETA
DO0 85 IX=IPM
SOL ( IX)=SOL( IX)
IP2<IX)=IF'1(IX)

85 CONTINUE
86 CONTINUE

IF(ETAN,LE.E4R)GO TO 92
MP=MF+ I
BR=AE(MFP>

90 CONTINUE
92 DO0 93 L=lvM

WRIT[(6,180)LSOL(L)TN(P2(t..>)
93 CONTINUE

WRITE(6, 190)ETAN
WR ITE( 6 Y200 )KPT

C
c EVALUATION AND PLOTTING3 OF THE FREOllJF7N(Y FESPON!:E
C FOR A EBESTr SUB'SET SELECTED 7II.TR

C
L-0

V=CMPLX(0. ,0.)
D~O 95 J=IPM
X=2*FlI*L..*TN( 1P*2( .J) )/Nf)
V:-V+SOL I (J ' *VEXP (CI J-PX (0. ,X)

95 CONTINUE
L=L4-1
Y( I )=CAFS(V)
Y(l)=20*ALO6i(Y(I)+.0000O01)

94 CONTINUE
CALL FFL0'r(YNOI ,O. ,D'X,2-., ,-100.0)

100 FORMAT(212,FlO.0)
110 FORMAT(4FI0.0)
120 FORMAT (5X v'r(,I 2,'v='E I0.2 )
130 FORiIATC/,SJX,'C( l,1,£ )- ( ,E12.4,' , 'PE1".4y')t

140 FORMAT (//,5X, 'RSS FOR FULL DA13S [2)

160 FORMAT (/,5X, 'E( ' ,I*t ' ) 1.F12.4)
170 FORMAT(/,5X,'E(',I2' ').',E14.7,' NO, '!,l

*'SMALLEsT ERROR')
180 FORMAT(//, ' H('q12v ) ( 'qEl2.4,' ,F.4'

190 FORMA'I(//,5X,'ERkOF~r',L-14. /)
200 FORMAT(//v5XP'NO. OF SUBESTS EXAMINFF, 1016)
2110 FORMAT(313v4FS.O)
2 20 FORMATrI 1212)
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230 FORMAT(5F5.0)
240 FORMAT(/,SXP'P3AN = pEl0.4v3Xo'S1BANril ='vEIOo.43XP

*'SBtANS2 =',E10.4v3Xv'T='vE10.4)
STOP
END

C

C SUBROUTINE INTO IS FOR SELECTING THE ELEMENTS
C OF A AND' B MATRICES FOR THE INDICATED SUBSET

SUBROUTINE INTG(AiPCOLAlDCOL.vHfiyND'IFPPI NQ2#TN*NSVIE)

COMPLEX A(30p3O)vCOL(30)PAI(3Ov3),ICOL(30)vli(30)
REAL TN(30)
INTEGER IND(30) ,IP(30)vIF'1 (30)

30DO 26 K2:IlNO
DOIDK)-Q1G 2O Jz26

26 CONTINUE

DO 2 J::IVNS

3 CONTINUFJI

RETURN
ENDr

C
C SUBROUTINE AHERIV IS F of~ SOLVIN6 THF I.INLA~R
C EQUJATIONS Afi: Py AND' EV*.UATINi THEf
C APPRUF'RIATEI ERROR
C

SUJIROUTINE AHEId 'V (Ap, (,I.9!3 H~t. y ITI ~K)
COMPLEX A3,0 CI 3),L(0 O 2l.(0 E E,3r
DO 5 I.=Ift
DO 5 J~1,t(

5 RL ( I J):zCMPtX (0.,v0.)
DO 60 Iz:1IK
1 P1= I+

lF(1.N[,1)GO 10 30

10 .(.f:(.J
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DO 20 J=2pK
20 RL(J,1)-CONJG(RL(lvJ) )/RL(l,1)

GO TO 60
30 DO 40 J=IPK

DO 40 M~lv1Ml
40 RL(IPJ)=RL(IPJ)-RL( I M)*RL(Mp,))

IF(I-EQ.K)GO TO 60
DO 45 J=IP19I(

45 RL(JPI)=CONJG(RL-(lvJ) )/RL(IvI)
60 CONTINUE
80 DO 100 1=1,1

SOL(I )=COL (I)
IF(I.EO.1)B[O TO 100
DO 90 L=1,IMI

90 SOL( I)=SOL(I)-SOL.(L)*RL-(I ,L)
100 CONTINUE

DO 140 1=1 fI\
J=K-I+l
IF(J.E~bK)GO TO 130
JR 1=J+ 1
DO 120 L=JFlIY(

120 SOL (J)=SOi.AJ)-SOL(L*R(Jpl.)
130 SOL(J):.SOL(J)/RL(JyJ)
140 CONTINUE

C
c EVALUA~TION OF ERRORY EflU(TION (.~?
C

ET=O.
DO 150 I=1,fK
ETh-ET FCOL (I ) *SOL ( I)

150 CONTINUE
ETI=CAiBS(ET)
RETURN
ENT)

C SUBROUTINE COMBO GENERATES STRTNG OF ONFS AND
C ZEROS FOR DELETION OF PASTS FlJN(,rIow,

SUBROUTINE COMPO(JNPNQ19MYNF)
DIMENSION JN(30) d
ONE S=
NF=0

1 NP=1I
2 CONTINUE

IF(JN(NF').EUO)GO TO 10
IF(NP.EQ.N01)GO TO 101
JN(NP)-O
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NPNFN+ 1
ONES-=ONES-1
00 TO 2

10 JN(NP)1l
ONES=ONES I-:
IF(ONES.EQ.M)GQ TO 100
GO TO 1

101 NF~l
100 RETURN

END
C
C
C SUB~ROUTiINE ['ELT IS FOR DELETING fRU*.W AND
C COLUMN OF A AND B MATRICES FOR EVAL.UATION
C OF El ERROR FUNCTIONS
C

SUBROUTINE DiELT(ACOLA1,D.'C0LN01rN5,,TE)
COMPLEX A(30930) ,COL(30) ,AI(30,30) ,l('tE(L(3,0)
I EM= I E--
IF(IE.EQ,1)GJ TO 30
DO 10 I=1FIEM
IIC0L ( I ):=(*OL- ( I)
DO 10) J=IvIEM
Al (I ,J)=A( I J)
Al (!,I)=A(JvlI

10 CONTINUE
DO 20 I=1,IEM
DO0 20 J=IEqNS
Al (IJ)=A(I9J+1)
Al (Jpi)=A(J+1,I)

20 CONTINUE
IF(IE.EQ.NQ1)GO TO 50

30 11O 40 I=1ENS
DCOL( I )=COL( 1+1)
DO 40 J=lNS
AI(IvJ)=A(I+lpJ+1)
Al%'JYI )=A(J+1 ,I+1)

40 CONTINUE -

50 RETUR:N
END

C

C
C SUBROUTINE FPLOTT IS POR PLOTTING THE
C FREQUENCY RESPONSE OF THE FILTER

C SUB4ROUTINE FPLOT'T(YNDIMXIrtXYMAXYMlN)

DIMENSION Y(NDIM)
DATA IBLANK(,1OINTIAST,IMINI]S/'
INTEGER PLOT(78)
IF (YMAX-YMIN)250,5r45
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5 YMAX=Y(l)
YMIN=Y(l)
DO 40 K=1,NDIM
IF(Y(tK)-YMAX)20r20, 10

10 YMAX=Y(K)
20 IF(Y(K)-YMIN>30940,40
30 YMIN=Y(K)
40 CONTINUE

IF (YMAX-YMIN)250Y250v45
45 X=XI-DX

IF(YMIN)60Y60Y50
50 1t0

GO TO 70
60 IF(YM(AX)62,6f3,6B
62 107

GO TO 70
68 lQ=IFI1X(76,*(-YMIN/(YMAX-YMI[N) )+.5)
70 KI=ICP+1

WRITE(IPRINTYJi000)YMIN
1000 FORMAT' YMIN= ',IFE10.3)

WRITE(IF'RINT92000)YMAX
2000 FORMAT(' YMAX= ,r1./

DO 2C(~K=1,NDIM
YK=Y(K)
IF(Ylk-YlIAX)81 ,84v80

80 YK=YMAX
GO TO 83

81 IF(YK-YMIN)82,84,04
82 YK=YMIN
83 IGUE=:IAST

GO TO 85
84 IOUE=IBLANK
85 CONTINUE

IP=lFIX(76.*((YK--YM~fN)/(YMAX-YMIN))+I.5i)

x = x *trix

10 IF7(YK)90PI50v150

90 DO 100 I=1,If>,
10 LOT( iE=IPANr

DO 110 L=j,IQ
110 POT(L)=IMINUS

lF( IF-IQ)l30, 120,130
120 PLO'T(KI)=IAST

GO TO 140
130 PLOT(KI)=IF'OINT
140 WRITE( IFRINTP3O00)XiY(K) 9101Er (F'L-Or(t) PM---l KI)

GO TO 200
150 DO 160 I=1,KI
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160 PLOT(I)=IiBLANK
PLOT(KI )=IPOINT
J=KI+1
DO 170 l-JPIP

170 PLOT(I)=IMINUS
PLOT( IB)=IAST
WRITE( IPRINT,300O)XPY(K) IQUE, (PLOT(M) PM=1 lEO

3000 FORMAT(' X=',1PEIO.3r3XP' Y='vlPEl0.3p3XrAly' \',77A1)
200 CONTINUE

RETURN
250 WRITE(IPRINTP5000)
5000 FORMAT(' ERROR--YMAX=YMTN')

RETURN
END
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C PROGRAM-2
C
C
C
C THIS IS THE PROGRAM LISTING FOR UNIFORMLY-
C SPACE PARAMETER FILTER
C
C
C EVALUATION OF THE ELEMENTS OF A' AND El' MATRICES
C OF EQUATION (3,3,3)
CIC A(IPJ) A' MATRIX
C B(I) B' MATRIX
C H(I) COEFFICIENT MATRIX
C M NO. OF COEFFICIENTS
C P PASSBAND EDGE
C Si LEFT STOPBAND EDGE
C 52RIGHT STOPBANII EDGE

*c ND NO* OF DELTAS FOR Sl~oAW.fH
C NC NO* OF C'S F OR SEARCHI
C DEL INITIAL DELTA
C DELI, DELTA INCREMENT
C CI m~rriA. c
C DELC C INCREMENT

DIMENSION DN(i0) ,Y(1O1)vE(100)
COMPLEXHi) A0i0,Bi),I(1,TV
READCJ, 100)NOfMpNI'rNC
READI(5, i0)FYS1 S2pul'ELPDEL'
READ(5, iiO)CI9DELC
PI=4*ATAN( 1.)
Di = IEL
F'=2*FPI *F'
Si =2 *F'I* Si
S2 =2 * PI * 2
SER=i.OE 6
K1i=4
Co=CI
rDO 5o IIV!I.,NC
DO 40 IL=lvND
DO 25 11,PM
riO is J=IPM
IF(T.E[?.J)GO TO 10
X=Di*( I-J)
A (IYJ ) -2*(SIN (S-*X)-SI(S *X) +SIN (P*X))IX
A(JvlI)=A( I J)
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GO TO 15
10 A(IPJ)=2*(S2-S1+P)+.0001
15 CONTINUE

X=( l-3)*E'i+CO
IF(X.EQ.0.)GO TO 20
EB(I)=2*SIN(P*X)/X
GO TO 25

20 E(I)=2*FP
25 CONTINUE

CALL AHERIV(AE',HYElPETYM)
C
C SELECTION OF THE SMALLEST ERROR AND
C CORRESPONDING COEFFICIENTS
C

E( IL )=E1
ET 1=2*F,-E 1
WRITE(6, 125)COvDI ,ETl
IF(SERLT.ETI)GO 'TO 35
SER=ET1
CB=CO
E4D=D I
D:O 30 L=lyM

30 HID(L)=H(L)
35 D1=r'1+rELD
40 CONTINUE

CO=CO+DtEL..C
D1=DEL

50 CONTINUE
WRITE(6, 130)CBvBlfSER
DO 60 I=1,M

60 WRITE(6o,140)HF(I)
DO 62 I=1vM

62 DN(I):=(I-3)*D+C
WRITE(6, 150) (lN( I), 1=1 M)

C

C EVALUATION AND PLOTTING OF FREOUENCY R-,E,(3rONSE
C

NOl =NO+l
L =0
DO0 70 I=IoNOl
V=CMFL.X(0. ,0.
11O 65 J=lpM
X=2*PI*.L*iN( J)/NO)
V=V+HE(J)*CEXP(CMF'LX(0. vX))

65 CONTINUE
L=L +1
Y( I)=CABS(V)
Y(I)=20*ALOG(Y(I)+.0000001)

70 CONTINUE
DX-Is*/NO

Be-~
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CALL FPLOTT(YPNO1 ,O. DXP4. ,-100.0)
CALL FPLOTT(EvNDvDELvDELCr1 .8v0.0)

100) FORMAT(r3p3r2)
110 FORMAT(5F5*0)
120 FORMAT(/v5XY' DELTA='PE10.49' ERROR=',3E12.5)
125 FORMAT(3X, 'C=' ,E9.3y3X, 'DELTA~z' EO- .2,3X, 'ERROR=' gEl2.6)
130 FORMAT(/r5XP'BEST C='PElO#4,' BEST tELTA=',E10.4v

V1 ERROR='t2E12.5)
140 FORMAT(/r5XF'HI :='p2E12.5)
150 FORMAI'(/p5XP5(EI0,4y2X))

STOP
ENDB

C
C
C SUBROUTINE AHERIV IS FOR SOLVING THE LINEAR
C EQUATIONS A'H=B', ANDa EVALUATING THE
C CORRESPONDING ERROR FUJNCTION
C

SUBROUTINE AHERIV(APOL.-9,SL.iElPET*K1)
COMPLEX A(10,10),C 'OL(10),RL(10F10)OL..(10)9,E1E2sE3 [.7T

DO 5 I=1,K
DO 5 J=IY~K

5 RL 1i,J=CMF'LXDO (0 0.)
DO 60 I=1,K

IF(I.N[E*,1l)GO TO 30
DIO 10 J=1IPK

DO 20 J=29K

GO TO 60
30 DO 40 J:=IPK

RL ( I .J) =A ( I v..)
DOC 40 M=IYIMI

40 RL( )=L(Iv.)-R ,M d. !J
IF(I.EP.K)GO TO 60
DO0 45 J=IF*,I(

45 RL(Jvl):CON.JG(RL(p,.J))/R..(I.,I)
60 CONTINUE
80 DO 100 1:=1,1

IM1=I-1

IF(I.EQ.1)G0 TO 100
DO0 90 L1IPIMI

90 SOL( I )=SOL ( I)-SOL (L.)*RL 41v1
100 CONTINUE

DO0 140 I=1,K
J=K-I+l
IIF(J#EO.IK)GO TO 130

c ______ 7 - .-
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IF(J.EQ*K)GO TO 130
JP1=J+1
DO 120 L=JPlK

120 SOL(J)=SOL(J)-SOL(L )*RL(JPL)
130 SOL(J)=SOL(J)/RL(JYJ)
140 CONTINUE

C
C EVALUATION OF ERROR, EOUATION (3.3.4)
C

ET0.
DO 1;0 I=1,1
ET=ET+COL( I)*SOL(I)

150 CONTINUE
E1=CABS(ET)
RETURN
END
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C PROGRAM-3

C
C

C THIS IS THE PROGRAM LISTING FOR
C TONE ESTIMATION.
c
C
C Al PA2 TONES AMP'LITUJDIES
C BIP4P2 '.ONES FREQUENCIES
c KN 1;0. OF SAMPLES
C A(IsJ) A MATRIX
C COL(I) P~ MATRIX
C SOL (T) COEFFICIENT NATRJX
C E(1) EI'S ERROR FUNCTIONS
C SIR SIGNAL TO INT-ERFLRENCE RATIO
C SNR SIGNAL TO NOISE RATIO
C

COMMION IAz,2rbr2r:.4NN2k

REAL*9

INTEGER
INTEGERF JJP(50)v1-JP(50.) R
COMPLEX*16 1(05),O~O SJ.~0 (5I. (20) FT
COMF:'L,';.X*16 S-(509.50),COL(50),1BkSYY(10o)V~E.3
DATA )COL-,IND.,2-500*(O.OD0,OP.r.1)50*(O,0,0O,lc?)9"i-*0,

PI=4.0OD0*DATAN( 1.07.0)

IXT1=06?3

Sr1=A1>K1O**(--SNR/20))

WRITE(6,113)KN
WRITE(6, 1l7)F31 ,1i1

10 READl:1UP 100>LF I PN.MS PML PJt DIFI
If-(LFI.E11.1)0O .rc) 2

C
C GENERATION OF FBASIS FUNCT TON i- A RAM FI'llI
C

D( 1 )=D1t
DO101: l:2 N

1 D (I )=1(II ) +D~2
GO TO 53

2 READ (5 f '220) N1 ,N2 v 13 , 4
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DO 3 l=2vN1
3 D(I)=D(I-i)+li2

D(Nl+1 )=D3
DO 4 J='2vN2

4 D(Nl1+J)=D(N1+J-1)+D4
N=Nl+N2

5 WRITE(6p2l0)N
IF(IND1.EQ.1)GO TO 11

C
C GENARATION OF GAUSSIAN NOISE IN DATAY
C EQUATIONS (4.2.2) AND(44)
C

['0 7 I=IPKN
CALL GAUSS(IXPSD,0,,V)
CALL GAUSS(IXPSDP0.FV1)
VN:=CMF*LX(VYV1)
F*1=2. i* 10 FI * Ft
F,2=2 * DO*P-I*EB'
Y(I )=A1*CIDEXF*(rlDCMF'L.X (0 * DO, F'1* ( 1-)
Y( I)=y (i)+A.*crEX'(rCMF.X (0 . D'O, '* (I--I

7 CONTINUE
11 IF(IND3.E0.0)GO TO 8

P1=2.*F*(J(J ))
P2=2.*FI*D(LJF(2))
1DO 9 I=IKN
Y( I)=Y (I)-SOLI (I)*CE'XP I('f L FX (0. 1* I['P*( 1--i )))
Y (l)--'(I ) -SOLl (2*DX(CFL(.OI2(I)))

9 CONTINUE
8 NS:=N

C
C EVALIJArION AND RE--ORDERING OF' ElT ERROR
C FUNCTIONS, EQUATIONS (2.2.9) AND (2,.2.10)
C

IE=0
CALL IN*TG(ACOLYINI:,IFli-N.N0SPL~f-I ,I-)
CALL. AHERIV(ACOL-,SJL ,YFT ,'NO,KN)
ETA=CIACS (ET)
NS=N-1
DO 40 IE=IN
CALL rELT(ACOL,.Syrl'c,.NNSII:)
CALL IERIV(SECOLSOLPYE'IN'.,KN)
E( IE)=CDAFS(ET)

40 CONTINUE
DO 60 K=1v,d
AE(1()=E(K)
I P (K ) =K
DO 50 LF-'IN
IF(AENK).LE.E(LF1)GO TO 50
AE(K)=E(LF,)
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50 CONTINUE
E(IF(K))=1.OE 6

60 CONTINUE
DtO 2000 IXX=1.N
WRITE(6,170)IP(IXX)PAE(IXX),IXX

2000 CONTINUE
c
C BEGINING OF SEARCH FOR THE BEST SUBSET
C

DO 99 M=MSPML
WRTTE(6. 150)NPM
NR=N--M
DO 70 I-iNFR,
INI( I )=l
INIID(I )=1

70 CONTINUE
DO 80 J=1,M
IND( J+NR )=0
I NED(J MR) =0

110 CONTINUE

MF=NR+ 1
BR=AE ' )
KP =1
KFPT =
MI=M+1
ETAN=1.OE 6
DlO 90 llT::1,MI
IF(IT.EcQ.1)6O TO 82
KP(PIRl-)/1-l
KF'T=K FT + KF

82 DO 86 K=lYK'
IF(1T.EO.1)GO TO 83
CALL COMDO(INDqNvNRvNF)

83 CALL 1NtG(A,COLY, INnIplFNNSLFI ,IE)
CALL (AHERI'(AYCOLSOLvYvE7T ,N!39KN)

ETA=CIIADS (ET
IF(ETA.GT.ETAN)GO 'TO 86
E TAN=ET A
ETAN:=ETA
DO 84 I=1,N
INDPt( 1)=IND(I)

84 CONTINUE
DiO 85~ J:z I, A
SOL1(J)=SOL (J)

85 CONTINUE
86 CONTINUE
87 IF(ETAN.L.E.IIR)GO TO 92
88 MP=MFP+l
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BR=AE (MP)
90 CONTINUE
92 J=O

DiO 93 L=IYN
IF(INDE(L).EQ.1)GO TO 93
J?= J+ 1
JP(J)=IP(L)

93 CONTINUE
['0 95 L..=1,J
LJP (LP) =JP (LF*)
JJP (LP) =LP

IF(L.JP(LF).LE.J(K'))G() TO 94
L JP (L.F') = JF (NP)
JJP (LP) =KF*

94 CONTINUJE
JP(J.!F(LP) )=lF 6

95 CONTINUE
Wt'UTE( 6,200)KFT
DtO 96 [.=1yJ

96 CONTINLIF
WR~ITi(6p:190)ETAtN

99 CONTINUE

IF(INE'3.EQ~1)Go To 10
1F(TND.E0.1)(3 To 101
(60 TO 10

101 CONTINUE
100 F Crm )T I v3 12 *--F 10. 0
105 FORMAT (13, F 10 0)
110 F ORMA (4F 10 4.o)
113 F0RMAT(/qp5X,'NO. OF SAMMLVS ='9,14)
115 FORMAT(/,X'A=',E1O.4,5X, 'A2)= ,[*10,4)
117 FORMAT(/5X'F=',EO.4,iX<'F-',L1.4)
120 FORMAT(5x f 'D ( ',v12 ,' )::=' PE 12. 4)
125 FORMAT(/,LX'SI_ EO4S, SR: E42

*'VAR.-z' v F10. 4)
130 FORMAT(/v5X, 'C( / 12 ' )= ( - 12.4.' !o ' ,I2.4,' )l')
140 FORMAT(//p5X, 'F9S FOF: FULL DV~lS :: E24
150 FORMAT(//r5XP'N=: 12,:.' M= ,IF')),
160 FOR)MAT /,X , 'F( I ?,] F' ,17~.7)
170 FORMAT(/,5X 'E ',12,' -',E:1:3.7, ' NO. 9,',

*' SMALL17ST ERROR')
180 FORMAT( /X, 1( 9.1'2 v v' ,F 10. 4,f !J pL '1,f );:z'

*E.1O.4y' o, 'PE10.4,')'
190 FORMAT(//,5X,'ERRuOR '.LI1.4)
200 FORMAT (// r X, 'NO. OF SOJFSLI S LXOV1INLJ' ',14)
210 FORMAT(//vSXr'N='v12)
220 FORMAT(2J12r2F10.0)
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230 FORMAT(//p5XF'SUiM OF COEFFICIE.NTS SQUARED ='PE12.4)
240 FORMAT(311)

ST OP
END

C
C
C SUBROUTINE INTO IS FOR EVALUATION OF ELEMENTS OF
C A AND Bt MATRICES FOR EACH SUBtSET TO FIE EXAMINEDP
C EQUATIONS (4.2.14) THRU (4.2.16)
C

SUBROUTINE INTG(ACOL Y iND, ,IPNNSLFI, IE)
COMMON F1 oA1 ,A2,B1,B2,D1 l,Dt3it'l4,N1 N2yKN
COMPLEX*16 A(50v50)v3COL(50) ,Y(50)
REAL*3 D(50) PAD(50) ,X,~lY ,y2Y:3,A1 ,A2,FtI B2,PI
REAL*@ D1pD2vD3vD4vA
INTEGER IND(50) ,IF(50) ,JP(50)
IF(LFI.EQ.1)GO 'TO 2
D (I ):=I1
DL) 1 1v'2N

I D(L )=r(L-1 )+D12

DO 3 L=2pN1
3 D(L >=D(L-1 )+D2

D( N 1+.1 ) --:r,3
T1 O 4 L L:- "2YN':

4 D (N I+ L ):='. ( N 1L L -- I)+ DI4
5 IF(IE.E(.4.0)G0 10 :30

IF(IFO,-100TO 25

i:O 20 L=19,N
IF(L.NE-.IE)(3O TO 210
DO0 15 M::LYNS

15 11(M) --I M+ I
20 CONTINUE

GO T0 30

DO 26 1 2-1,N
IF(INE'i(K2)*EO.1)GO TO 26

26 CONTINUE
DO 28 1 3=11

DIO 27 1 4=1,K
IF(e'K3).LE.ADt\4))6o TO 27
11(K3) AD(K4
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JF(K3)=K4
27 CONTINUE

AE'(JF(.kl3))=l.OE 6
28 CONTINUE

NS=K
30 DO 60 INS

DO 60 J=IPNS
X=(D(J)-E'(I))*2.0D'O*PI
IF(I-J)40Y50P40

40 CONTINUE
A(IJ)=(l.0130-CDEXP(DCMFPLX(0.E'0,X*KN)))
A(IJ)=A(IJ)/(l.D-C'EXF-(ICMPLX(0.,E'0X)))
A(J, I)=ICONJG(A( I J))
GO TO 60

50 A(Ip,)=1.or'0*KN
60 CONTINUE

['0 80 K=lN!3
COL (K)(0.1,O 0 * 0,,
Y3=--2,L'0*F*D(I )
DO s0 J-Iy ,t N
COL. (<)CL(K)+Y (J)*CDEXP(r,Ct-F*LX 0.109, Y3*(J- I) ))

P,0 CONTINUF
RET U F:N

C
C
c SUBRtFOUTINE AHERIV IS FOR SOLVING THEK LTNFAF:
Cl E1UArIdINS AC:~11 AND CORR FSPONDING IR:1 I UNCT 100.
C

SUBROUTINE AHERIV(AqCOl-.SOl.,YvETI ,kN)
COMMON 1,i AF1 }2h1,2I[4,: N
REAL*3 A AliI~,N5),1,;
COMPLEX*16 A5,O CL~),I(05),o(0
FOMPLEX*16 XXi ,Y( 100) vEiE,E3,F'rPxx
lDO 5 I:-71,NY
DiO 5 J=-K'

5i RL I J ) =1Chl- ( .:0 v 0. 0110)
PO 60 T=1,N
I F,-l fI I

IF(1.NF.l)GO TO A0
DO 10 J=lvK

10 RL(lp,J>=A(IPJ)
DO 20 J=2 91

20 TO. ( J, 1 ) =DC)NJG (Rt- (I J ) )/R 1P. i .*1.
GO TO 60

30 rio 40 J=Ilo,
RL (Iv,))-A ( I PJ)
DO0 40 M=1,IMI
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IF(I.EQ.K)GO TO 60
DO 45 J=IP1 rK

45 RL(JpI)=DCONJG(RL(IPJ) )/RL(171)
60 CONTINUE
80 DO 100 I=lpK

IM11I-1
SO). (I)>COL( I)
IF(I.EO.1)GO TO 100
1)0 90 L=1,IM1

90 SOL.(I )=GOL( I)-SOL(L)*RL_(I PL)
100 CONTINUE

D~O 140 I=tIPK
.J=K-1
IF(J.EO.K)GO TO 130
JF'1:.-J+l
I'M12 L=-.JFP K

120 SOL ( J)=!30[ ( J) -SOL (L ) *R*%L. (.J,7..
130 SOL(J)=SOL.(J)/RL(JvJ)
140 CONTINUE

c
C, EVALUATION OF EFR OR EPI.)YTIO.N (4.2.1.9)
C

E2=~0.01'10
E I=0. 01:10

E2"=E2 K3OL.. ( 1I ) *iICONJ(3 (COL1. Il
15 CONTINUE

DtO 16 13:-IYKN

16 CONTINUE

Rt. TURN

c SUBR<OUTINE ':OMEO IS FOR~ f3ENFRtAT1NG STRING
C OF ONES A NT Zi2ROB FOR DIELET ION OF. F'ROF'EF
C BAST FIs ru;ONS

SU141*O'(J I IrLI C0M-t ( JN *N, Mv N17
EIIMENVIC3N N.40)
I ONE ' 1
NF-(

I Nr- I

I F fNW. R.U N0 TO 101
JN ( NF*) :

NF-NJ[~ 1OI

10NES=f)NK.
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GO TO 2
10 JN (NP)= 1

IONES=IONES+1
IF<IUNESEQ.M)G0 TO 100
GO TO 1

101 NF=1
100 RETURN

END
C

(1 SUBROUTINE. GAUSS AND RANDU ARE FOR
C GENERATING GAUSSIAN NOISE
C

SUBROUTINE G(.'ISS(IXPSFAMYV)
A=0.0
DO 50 I:.-yl2l
CALL RANDU(.IXYIYYY)
IX =I Y

50 A=AF1Y
V=(A-6.O)*+AM
RET URN

SUBROUTINE RANDUIX'IlYrYFL)
I Y =- I X * 6'J5 3 9
IF (IY )' p6p6

5 IY=1Y+f2l474a3647-fl
6 YFL:=.IY

RETURN

END'
C

C SUFF.O~rTINE DELT IS FmF DEl.. E. i ING FRF'VF R R 1)W
c AND COLUMN OF: A AND B MAT RIc.F".; FORh
C EVALUATION OF EI ERROR FUNCTIONS
C

SUB3ROUTINE r'EL.T(APCOl ,YSItOLNNS3,I-)
COMFLJLX*16,A5,0,fl.(0)S'.0S).IO(0

IF(F.ELi)O)TO ,30
DOC 10 1 PTEM
['COL ( I) =-C0L ( I
DO 10 J-IIEM

10 CONTINUEt
DOG 20 T1vIEM
DO0 20 J=lEvNS
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20 CONTINUE
IF(IE*EO,N)GO TO 50

30 DO 40 I=IEvNS
DCOL (I )=COL( 1+1)
DO 40 J1,PNS
SC I,.J>=A(I+1 ,J+1)
S(J, I)=A(J+lpI+l)

40 CONTINUE
50 RETURN

ENE,
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C PROGRAM-4
C
C
C
C THIS IS THE PROGRAM LISTING FOR TWO
C FREQUENCY ESTIMATION BY COMPLEX SUBSET
C SELECTION AND WINDOWING TECHNIQUE.
C
C
C A1,A2 TONrS AMPLITUDES
C B1,B2 'TONES FREQUENCIES
C KN NO. OF SAMPLES
C A(IJ) A MATRIX
C COL(I) B MATRIX
C SOL(I) COEFFICIENT MATRIX
C E(I) El ERROR FUNCTIONS
C SIR SIGNAL TO INTERFERENCE RATiO
C SNR SIGNAL TO NOISE RATIO
C NRUN NO. OF RUNS
C

COMMON PI,AlA2,fBI,11,I2, 13,vD4,NI.N2, KN
REAL* D(40) ,E(40).,AE(40) ,Al ,A2,BI ,BFI
REAL*8 D1,i12,3,D4,BRETA,ETAN,IIF2
REAL*8 El1. 1(100) ,Ert22(100) ,DMLIR1 ,MFR2,PSTP 1 ,ST1?
REAL*8 ElI (100) , ED2 (100) , iMFANI, iM[:AN2 ,VARI ,VAR2
INTEGLR I'(40), ND(40),INDI(40),INF(40) ,,.1I(40)
INTEGE-.r LJF'(40) ,Rv,JJ:'(40)
COMF'LfIX*6 A40,40),FO.(40),S(L40),S[LI (40),ET
COMF:'LEX*16 VN,S(40,40),rCOL(40),BRSSY(1O0)
DATA ACOL_/1600* ( () ODO,0,O1i() ), 40 (0, DO, 0[O, ) /

DArA INII/40*0/
F'I=4 * OI'I:ATAN (1 * 1O:0

REA1)(5, y1 10) NRUN, SIR, SNR, Bl , 12
REAr (f, l105)KN, N1,MS, ML..
A1=1 ,DO(
A2=A( i0.* (-SIR/20))

WRITE (6, 230)KNNRUN
WRITE (,, 350)A, A2
WRIT11 (6,360)B1 vB2
K P T =: 0

IX:=:3657137
SDI=A1*( 10**(-SNR'20))
VAR =SD**2
WRITE (6,280)SIRSNRVAR
F'I =2, li' 0I B1
P2=2 TiO.P I B2

C
C BEGINING OF EACH RUN
C

DO 500 IJ=I,NU:tJN
C
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C GENERATION OF GAUSSIAN NOISE !N DATAY
C EQUATIONS (4.2#2) AND (4.4.1)
C

DO I I=IKN
CALL GAUSS(IXvSrl,0.vV)
CALL GAt)SS(IXPSDO.,Vl)
VN. CMNLX(V,-V1)
Y(I)=AI*CiEXP(DCMPLX(O.DOPF*(I-1-))
Y(I)Y( I) +A2*CDEXP'( EICMPLX (0.DO, P2*(1-1) )) +VN

1 CONT INUE
C
C GENER~ATION OF BtASIS FUNCTION PARAMETERF,
C

N=10
NO=0
LFI=O
Dl = .

1)( 1 ) =0. Do
DO 2 1=2,10YI

(30 TO?7
3 LFI=l

D (6 =D:4

4 11 (J4+5) =D(J+4) +ED
N=10(
N S::N

7 IE=O
CAL.L INTG(ACOLYIND, lFNNSLFIIE)
CALL A14ERIV(Apcoi-psoi-sY,rFNS,KN)
ETA=~CI:APS ( F)

C
C EVALUATION AND RE-ORDiERING OF El ERROR
c FLINCTIONS, EOUATIONS (..)AND (..0
C

NS-=N-- I
DO 40 IE=1,N
CALL DiEL'T(ArCOLSvDCOLPNPNS, IE)
CALL AHERIV(SYDCOLPSOL ,YET ,NSPlN)
E( IE)=CDAD 3(ET)

40 CONTINUE
DaO 60 K=IPN
AE(K)=E( )
I F(K )=K
DO 50 LF-riN
If-(AE(K).LE.E(LF'))GO TO050
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AE(K)=E(LF')
IFP(IK):LP

50 CONTINUE
E(IF'(K))=1.OE 6

60 CONTINUE
C
C BEGINING OF THE SEARCH FOR BEST SUBSET
C

DO 99 I1=MSPML
NR=N--M
DO) 70 I=IPNR
INri( *t)..
I NDB ( I ):-1

70 CONTINUE
110 80 J=1IFM
INI'I( J+NR)=0
INDD (,.J+NR )=0

80 CONTINUE
IE=--1
MF'=NR+ 1
BR=~AE (MP).
Kr= I
KFT=l FT+1
MI=M+i
ETAN=1.OE 6
DO 90 IT=IPMI
Ir(ITEn.1)(3O TO 82IP (P (RfT-2 ) (1 1
K P T = K P' + K

82 DO 06 N=IYKFP
IF(IT.En~i)GO TO 83
CALL COMBO(INDNYNRYNF)

63 CALL INTG(ACOLYINDYIF'wNNSLFI IE)
CALL AHERIV(APCOL ,SOLPYYET ,NSKN)
ETA=CDABS (ET)
IF(ETA,13T.ETAN)GO TO 86
ETAN=E*VA
DO 84 I=IN
lNDP ( I) =IND (I)

84 CONTINUL
DO 85 J=1,M
SOLI (J)=SOL(J)

85 CONTINUE
86 CONTINUE
87 IF(ETAN.1 E.BIR)GO TO 92
88) M'P=MF-fI

BR=AE (MF*)
90 CONTINUE
92 J=O

DO 93 L=1,N
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IF(INt'B(L).E0,1)GO TO 93 9
J=J+f 1
JP(.J)=IP(L)

93 CONTINUE
DtO 95 LF=IPJ
LJP(LP)=JF'(LF')
JJP(LF')=LP
DO 94 l(F'=IPJ
IF(LJP(LP)6LE.JP(KP))GO TO 94
LJP(LP )=JFP(KFP)
JJP (LP) =KF

94 CONTINUE
JP(JJF>(LP))=IE 6

95 CONTINUE
C

£ APPLYING WINDOWS AROUND SELECTED
C BASIS FUNCTIONS
C

N0=hN0+1

1F(NOoGE.2)GO TO 505
D3=1 ( L. JP( I) )-D 1
D4=D(LJF(2) )-D1
(30 'TO 506

505 MS=2

IF(DIABS(D(L.JP(l ) )--D (LJP(2) L .E: *0021*10.GO0 T 550
D3=D(LJF,(1))*-2*1
r.441-(LJP(2) )-2*1:il

506 IF(D3o3E.o.ri)Oo TO 520

IF (D4-D3)525p525v520
525 rP4=114+2'*IIJ
520 IF (D4-D3-4*D'I)50lv502,503
501 D4=E'4+3*r'1

GO TO 503
5 02 D4=D4+Dl
503 IF(NO.GE.7)GO TO 98

IF(ETAN.GT,.l.E--10oGO TO 3
98 CONTINUF
99 CONTINUE
550 ED(I.J)=D(LJP(l))

E2 ( IJ) =D (LJP(2))
WRITE (6, 300) EI'( Ij)wFt2( 1 .1)

500 CONTINUE
C

C EVALUATION OF MEAN AND VARIANCE OF

C THE ESTIMATESI
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CALL VARIAN(EDlED2uDMEAN1,DMEAN2,VARIVAR2,NRUN)
WRITE(6v290)
DO 510 1111,PNRUN
EDlI (II1)=DABS(ED1(IIl )-El)
ED22(II1 )=DABS(ED2(II1)-B2)
WRITE(6,300)ED1(III)PED11(Ill),ED2(III)ED22II1)I510 CONTINUE
DMER1=DABS(B1.-DMEANI)
DMER2=DABS (B2-DMEAN2)STlDGR(Al
STD1:=DSORT(VAR2)

WRITE(6v310)DMEAN1 ,DMEAN2
WRITE(6r330)DMERl ,DMER2I WRITE(6,320)VARl vVAR2
WRITE(6,340) STDl ,sTD2

100 FORMAT(I1q3I2v2Fl0*0)

105 FORMAT(2I3P212)I110 FORMAT(I3v4FI0,0>
120 FORMAT(5X, 'D( 'vI2v'Wv' E14.6)
130 FORMAT(/95XP'C(',I2y')= ('PE12.4y' v

*E12v4v' )
140 FORMAT(//y5XF'RSS FOR FULL BASIS -'PE1" 4)
150 FORMAT(//p5X, 'N='PIp12' M='P,12)
160 FORMAT(/f5Xv'E('v12,')='vE12#4)
170 FORMAT(/y5XP'E('pI2,')='PE12.4p' NO. 'pI2

*Y' SMALLEST ERROR')
180 FORMAT(/,SX,'C('vI2 1 ')=('tEl2.4p' r 'PE12.4,')'
190 FORMAT(//v5XY'ERROR='vE12.4)
200 FORMAT(//PSXY'NO, OF SUBSETS EXAMINED ='Y14)
210 FORMAT(//p5XP'N='PI2)
220 FORMAT(212v2F10.0)
230 FORMAT(/,SX, 'KN=',I3,3XP 'NRIJN=' ,3)
280 FORMAT(/y5XP'SIR ='vE10.4v3Xr'SNR :=',El0.4,3X

*, 'NVAR=' vE1O.4)
290 FORMAr(//P9x,'FRE~l',7XP'FREQ*--ERr ORl'v7X.,'FREQ2'

*v7X, 'FREQ-ERROR2')
300 FORMAT(/r2Xv4(3XvE12.6))
310 FORMAT(//YSXP'MEAN1 =',E12#6p7XP'MEAN2 = 'PE12.6)
320 FORMAT(/,SX,'VARIANCE1=',E12.6p5X,'YARIANCE2='PEl2.6)
330 FORMAT(/p5X,'MERROR1=',E12.6,7X,'MERROF2='El2.6)V
340 FORMAT(/p5XP'STDIV1 'vE12,6y5Xr'sTiv2 'PE12.6)
350 FORMAT(/,5XP'Al='PEIO.4,3X,'A2=',E10.4)
360 FORMAT(/p5X,'F1-',E1O.4,3X,'F2=',E10.4)

ST OP
END

C
C
C SUBROUTINE INTG IS FOR EVALUATION OF ELEMENTS OF
C A AND E MATRICES FOR ACH SUBSET TO BE EXAMINEip
C EQUATIONS (4.2.14) THRU (4.2.16)
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C
SUBROUTINE INTG(APCOLPYPINDPIPPNPNSPLFIPIE)
COMMON P1 ,A1 A2,~lB1 E2,D1 D2,D3,D4,N1 vN'vKN
COIIPLEX*16 A(40v40),COL(40)PY(100)
REAL*8 D(40)PAD(40),X,~Y2,Y3,AlA2,BlB2,PI
REAL*8 DlE'2i'D3,D4
INTEGER IND(40)PIP(40)vJP(40)
IF(LFI.EQ.1)GO 'TO 2
D(1)=D1
DO 1 L=2vN

1 D (L) =D (L--1) +D1f2 D ( I))=13
11 (6) =14
DO 3 L=2Y5
D(L )=D (L-1) +Dl

3 D (L+,))=D (L+4 ) +1
5 IF(IE.EQ.0)GO TO 30

If7(IE.EQ.-1)GO TO 25
NS=N'--
DO 20 L=IPN
IF(L.NE*IE)GO TO 20
DO 15 M=LYNS

15 D(M=rt Mi.1
20 CONTINUE

GO TO 30I25 K=O

DO 26 K2=IN
IF(INDiK*2.EQ.l)GO TO 26
AD WlI ) =D (IF )
K=K+l
K1=K1+1

26 CONTINUE

DO 28 K3=1,K

D(K3)=AD(K3)

DO 27 K4=ltK 
'

IF(D(K3).LE.AD(K4))00 TO 27
D(K3)=AD(K4)I
.jP(K3)=K4 '

27 CONTINUE
AD(JF(K3))=1.OE 6

28 CONTINUE 
'

NS=K
30 DO 60 I=.1PNS

DO 60 J=INS
X=(D( J)-D(1) )*2.ODO*PI
IF(X)40r50,40

40 CONTINUE
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A(IPJ)=(1.ODO-CDEXP(DCMPLX(0.DOX*KN)))
A(Iv.J)=A(IJ)/(1 .D0CIEXP(EICMPLX(0.DOX) ))
A(Jp I)=t'CONJG(A( 1 J))
GO TO 60

50 A(Iv.j)=1,00*KN+f.O00O1
60 CONTINUE

DO 80 K=1,NS
COL(K)=(0 .Ei~v0.D0)
Y3=-2 I0*PI*DCK)
rDO 8o J=1,KN
COL(K) =COL (K )+Y( J) *CDEXP( ECMPLX(0 DO PY3*( J1) )

80 CONTINUE
RETURN
ENDE

C
C
C SUBROUTINE AHERIV IS FOR SOLVING T14E LINEAR
C EQUATIONS AC=Et AND CORRESPFONDING ERROR FUNCTION
C

SUBROUTINE AHERIV(ACOLgP'OL.YETYKvKN)
COMMON PI ,wCI A2yB Bp~2E'l': i2,3,D4,N1 YN2
REAL*8 A1,A2d31,E-t2,PIv,VN(50),C,(D,2
COMPL.EX*16 A(40y4O)vCOL-(40)YFRL(4O4O)9,!)0.(40)
COMPLEX*16 XX:LPY(100) ,E1,E2.IE3,E'TXX
DOC 5 I=1,K
DIO 5 J=Id(

5 R.-I.)=rCMFPLX(O.0DOjO0E'0)
DO 60 I=:LYK

IM1=I-i
JF(I-NE.1.)3O TO 30
DiO 10 J~1,K

10 RL(1y.J)=A(:LJ)
DO 20 J=-'IK

20 RL(Jyi)=DCONJG(Rl-(1PJ))/RL(1i)
GO TO 60

30 DO 40 J=II(

DlO 40 M=IPIM1 i
40 RL(,)=R. (IJ)--RL(IM)*R-(MY,J)

IF(I*EO.K)GO TO 60
DO 45 JzIPlK45 R(Jpl=DCOJG(R(IrJ)/RLIPI

60 CONTINUE
so riO 100 17-1,1

I MI = 1-
SOL (I )=COL (I)
IF(I.EQ.1)GO TO 100
DO 90 L=lplMl

90 SOL( I)=SOL( I)-SOL(L)*RL(I pL)

!I0ip
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100 CONTINUE
DO 140 I=I,K
J=K-I+1
IF(J.EO.K)GO TO 130

[1O 120 L=JPIK
120 SOL(J)=SOL(J)-SOL(L)*RL(JL)
130 SOL(J)=SOL(J)/RL(JJ)
140 CONTINUE

C
C EVALUATION OF ERROR, EQUATION (4.2.19)
C

E2=0,ODO
E1=0.0D0
DO 15 I1=,1K
E2=E2+SOL(I1)*DCONJG(COL(I1))

15 CONTINUE
DO 16 13=IKN
EI=E1+CDABS(Y(13))**2

16 CONTINUE
ET=E..E2
RE TURN

E N 1I
C
C
C SUBROUTINE COMBO IS FOR GENERATING STRING
C OF ONES AND ZEROS FOR PROPER DELETION OF
C BASIS FUNCTIONS
C

SUBROUTINE COMBO(JN,N,M,NF)
DIMENSION JN(40)
IONES=M
NF=O

1 NP=1
2 CONTINUE

IF(.N(NP).EQ.0)GO TO 10

IF(NP.EQ.N)GO TO 101
JN(NP)=O
NP=NPF1 ,
IONES=IONES-1
GO TO 2

10 JN(NP)=1
IONES=IONES+l
IF(IONES.EQ.M)GO TO 100
00 TO 1

101 NF=1
100 RETURN

END
C
C
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C SUBROUTINE GAUSS AND RANDU ARE FOR
C GENERATING GAUSSIAN NOISE

SUBROUTINE GAUSS(IXSPAMPV)
A=0,0
DO 50 I1IP12

CALL RANDU(IXPIYPY)
I X=I Y

50 A=A+Y
V=(A-6.O)*S+AK
RE TURN
END
SUBROUTINE RANDU(IXPIYPYF'L)
I Y=IX *655 9

5 IY=IY+2147483647+1
6 YFL=IY

YFL=YFL* .4656613E-9
RETURN
END

C
C
(I SUBRtOUTINE VARIAN IS FOR EVALUATING MEAN
C AND VARIANCE OF THE FREQUENCY ESTIMATES

SUBROUTINE VARIAN(ED1vED2,DlMEANI ,DMEAN2IVAR1 ,VAr 2,NFWN)

REAL*8 EEil(100),ED,2(100)gPDMEAN1,EIMEAN2pVARI
REAL*8 VAR2pXlX2
VAR l =65. io
VAR2=0.DO
I'MEAN1=0 .D0
DMEAN2=0 .11
DO0 10 I=lvNRUN
DMEAN1=DMEAN1+fEDI (I)
DMEAN2:=DMEAN2+ED2 (I)

10 CONTINUE
DMEANI 4'MEAN1/NRUN
EIMEAN2= tME "AN2/NRUJNj ;
DO 20 J=lpNRUN
VAR1=VAR1+(ED1 (J)-DMEANI )**2
VAR2=VAR2+ (Eii2(J)-DMEAN2)**2

20 CONTINUE
VAR1=VAR1/NRUN
VAR 2 VAR2 /NRUN

RE TURN
END

C
C
C SUBROUTINE DELT IS FOR DELETING PROPER
C ROW ANDI COLUMN OF A AND B MATRICES FOR
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C EVALUATION OF EI ERROR FUNCTIONS
C

SUB~ROUTINE DELT(Ai'COLPSDCOLPNPNSPIE)
COMPLEX*16 A(40p4O)vCOL(40)PS(40p40)tDCOL(40)
IEM=IE-1
IF(IE*EO.1)GO TO 30
DO 10 I=1vIEm
DCOL( )=COL( I)
DO 10 J=IIEM
S(IPJ)=A(IPJ)

10 CONTINUE
DO 20 I=1,IEM
DO 20 J=1EPNSI

20 CONTINUE
lF(ZE*EQ.N)GO TO 50

30 DO 40 I=IEPNS
DCOL (I )=COL( 1+1)
DO 40 J=IPNS

S(JtI)=A(J+lrI+1)
40 CONTINUE
50 RETURN

END
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